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Chapter

T
he 1995 Reader’s Digest Sweepstakes 
grand prize winner is being paid a total of
$5,010,000 over 30 years. If invested, the

winnings plus the interest earned generate an
amount defined by:

A � erT �T

0
mPe�rt dt

(r � interest rate, P � size of payment, T � term
in years, m � number of payments per year.)

Would the prize have a different value if it were
paid in 15 annual installments of $334,000 instead
of 30 annual installments of $167,000? Section
5.4 can help you compare the total amounts.

The Definite 
Integral

5
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Section 5.1 Estimating with Finite Sums 263

Chapter 5 Overview

The need to calculate instantaneous rates of change led the discoverers of calculus to an
investigation of the slopes of tangent lines and, ultimately, to the derivative—to what we
call differential calculus. But derivatives revealed only half the story. In addition to a cal-
culation method (a “calculus”) to describe how functions change at any given instant, they
needed a method to describe how those instantaneous changes could accumulate over an
interval to produce the function. That is why they also investigated areas under curves,
which ultimately led to the second main branch of calculus, called integral calculus.

Once Newton and Leibniz had the calculus for finding slopes of tangent lines and the
calculus for finding areas under curves—two geometric operations that would seem to
have nothing at all to do with each other—the challenge for them was to prove the connec-
tion that they knew intuitively had to be there. The discovery of this connection (called the
Fundamental Theorem of Calculus) brought differential and integral calculus together to
become the single most powerful insight mathematicians had ever acquired for under-
standing how the universe worked. 

Estimating with Finite Sums

Distance Traveled
We know why a mathematician pondering motion problems might have been led to con-
sider slopes of curves, but what do those same motion problems have to do with areas
under curves? Consider the following problem from a typical elementary school textbook:

A train moves along a track at a steady rate of 75 miles per hour from 
7:00 A.M. to 9:00 A.M. What is the total distance traveled by the train? 

Applying the well-known formula distance � rate � time, we find that the answer is
150 miles. Simple. Now suppose that you are Isaac Newton trying to make a connection
between this formula and the graph of the velocity function.

You might notice that the distance traveled by the train (150 miles) is exactly the area
of the rectangle whose base is the time interval �7, 9� and whose height at each point is the
value of the constant velocity function v � 75 (Figure 5.1). This is no accident, either,
since the distance traveled and the area in this case are both found by multiplying the rate
(75) by the change in time (2).

This same connection between distance traveled and rectangle area could be made no
matter how fast the train was going or how long or short the time interval was. But what
if the train had a velocity v that varied as a function of time? The graph (Figure 5.2)
would no longer be a horizontal line, so the region under the graph would no longer be
rectangular.

5.1
What you’ll learn about

• Distance Traveled

• Rectangular Approximation
Method (RAM)

• Volume of a Sphere

• Cardiac Output

. . . and why

Learning about estimating with 
finite sums sets the foundation for
understanding integral calculus.

velocity (mph)

75

7 90

time (h)

Figure 5.1 The distance traveled by a 75
mph train in 2 hours is 150 miles, which cor-
responds to the area of the shaded rectangle.

velocity

aO b
time

Figure 5.2 If the velocity varies over
the time interval �a, b�, does the shaded
region give the distance traveled?
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264 Chapter 5 The Definite Integral

Would the area of this irregular region still give the total distance traveled over the
time interval? Newton and Leibniz (and, actually, many others who had considered this
question) thought that it obviously would, and that is why they were interested in a cal-
culus for finding areas under curves. They imagined the time interval being partitioned
into many tiny subintervals, each one so small that the velocity over it would essentially
be constant. Geometrically, this was equivalent to slicing the irregular region into nar-
row strips, each of which would be nearly indistinguishable from a narrow rectangle
(Figure 5.3).

velocity

a bO
time

v

10 2 3

9
 v = t2

t

v

0.5 0.750 1
t

v � t2

Figure 5.3 The region is partitioned into vertical strips. If the strips are narrow enough,
they are almost indistinguishable from rectangles. The sum of the areas of these “rectangles”
will give the total area and can be interpreted as distance traveled.

Figure 5.4 The region under the parabola v � t2 from t � 0 to t � 3 is partitioned into
12 thin strips, each with base �t � 1�4. The strips have curved tops. (Example 1)

Figure 5.5 The area of the shaded re-
gion is approximated by the area of the
rectangle whose height is the function
value at the midpoint of the interval. 
(Example 1)

They argued that, just as the total area could be found by summing the areas of the
(essentially rectangular) strips, the total distance traveled could be found by summing the
small distances traveled over the tiny time intervals.

EXAMPLE 1 Finding Distance Traveled when Velocity Varies

A particle starts at  x � 0  and moves along the x-axis with velocity v�t� � t2 for time 
t � 0.  Where is the particle at  t � 3?

SOLUTION

We graph v and partition the time interval �0, 3� into subintervals of length Dt. (Figure 5.4
shows twelve subintervals of length 3�12 each.)

Notice that the region under the curve is partitioned into thin strips with bases of length
1�4 and curved tops that slope upward from left to right. You might not know how to
find the area of such a strip, but you can get a good approximation of it by finding the
area of a suitable rectangle. In Figure 5.5, we use the rectangle whose height is the 
y-coordinate of the function at the midpoint of its base.

continued
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Table 5.1

Subinterval [0 , �
1
4

� ] [ �
1
4

� , �
1
2

� ] [ �
1
2

� , �
3
4

� ] [ �
3
4

� , 1]
Midpoint mi �

1
8

� �
3
8

� �
5
8

� �
7
8

�

Height � �mi�2 �
6
1
4
� �

6
9
4
� �

2
6
5
4
� �

4
6
9
4
�

Area � �1�4��mi�2 �
2
1
56
� �

2
9
56
� �

2
2
5
5
6

� �
2
4
5
9
6

�

y

3
x

y

3
x

y

3
x

Figure 5.7 LRAM, MRAM, and RRAM
approximations to the area under the graph
of y � x2 from x � 0 to x � 3.

v

10 2 3

9

t

v � t2

Figure 5.6 These rectangles have ap-
proximately the same areas as the strips in
Figure 5.4. Each rectangle has height mi

2,
where mi is the midpoint of its base.
(Example 1)

The area of this narrow rectangle approximates the distance traveled over the time
subinterval. Adding all the areas (distances) gives an approximation of the total area
under the curve (total distance traveled) from  t � 0  to  t � 3  (Figure 5.6).

Computing this sum of areas is straightforward. Each rectangle has a base of length 
Dt � 1�4, while the height of each rectangle can be found by evaluating the function
at the midpoint of the subinterval. Table 5.1 shows the computations for the first four
rectangles.

Approximation by Rectangles

Approximating irregularly-shaped re-
gions by regularly-shaped regions for
the purpose of computing areas is not
new. Archimedes used the idea more
than 2200 years ago to find the area 
of a circle, demonstrating in the process
that � was located between 3.140845
and 3.142857. He also used approxima-
tions to find the area under a parabolic
arch, anticipating the answer to an im-
portant seventeenth-century question
nearly 2000 years before anyone
thought to ask it. The fact that we still
measure the area of anything—even a
circle—in “square units” is obvious 
testimony to the historical effectiveness
of using rectangles for approximating
areas. 

Continuing in this manner, we derive the area  �1�4��mi�2 for each of the twelve subin-
tervals and add them:

�
2
1
56
� � �

2
9
56
� � �

2
2
5
5
6

� � �
2
4
5
9
6

� � �
2
8
5
1
6

� � �
1
2
2
5
1
6

� � �
1
2
6
5
9
6

� � �
2
2
2
5
5
6

�

� �
2
2
8
5
9
6

� � �
3
2
6
5
1
6

� � �
4
2
4
5
1
6

� � �
5
2
2
5
9
6

� � �
2
2
3
5
0
6
0

� � 8.98.

Since this number approximates the area and hence the total distance traveled by the
particle, we conclude that the particle has moved approximately 9 units in 3 seconds. If
it starts at  x � 0, then it is very close to x � 9  when  t � 3.       Now try Exercise 3.

To make it easier to talk about approximations with rectangles, we now introduce some
new terminology.

Rectangular Approximation Method (RAM)
In Example 1 we used the Midpoint Rectangular Approximation Method (MRAM) to
approximate the area under the curve. The name suggests the choice we made when deter-
mining the heights of the approximating rectangles: We evaluated the function at the mid-
point of each subinterval. If instead we had evaluated the function at the left-hand endpoint
we would have obtained the LRAM approximation, and if we had used the right-hand end-
points we would have obtained the RRAM approximation. Figure 5.7 shows what the three
approximations look like graphically when we approximate the area under the curve y � x2

from x � 0 to x � 3 with six subintervals.
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266 Chapter 5 The Definite Integral

No matter which RAM approximation we compute, we are adding products of the form
f �xi� • �x, or, in this case, �xi�2 • �3�6�.

LRAM:

(0)2( �
1
2

� ) � ( �
1
2

� )2( �
1
2

� ) � (1)2( �
1
2

� ) � ( �
3
2

� )2( �
1
2

� ) � (2)2( �
1
2

� ) � ( �
5
2

� )2( �
1
2

� ) � 6.875

MRAM:

( �
1
4

� )2( �
1
2

� ) � ( �
3
4

� )2( �
1
2

� ) � ( �
5
4

� )2( �
1
2

� ) � ( �
7
4

� )2( �
1
2

� ) � ( �
9
4

� )2( �
1
2

� ) � (�
1
4
1
�)2( �

1
2

� ) � 8.9375

RRAM:

( �
1
2

� )2( �
1
2

�) � (1)2( �
1
2

� ) � ( �
3
2

� )2( �
1
2

� ) � (2)2( �
1
2

� ) � ( �
5
2

� )2( �
1
2

� ) � (3)2( �
1
2

� )� 11.375

As we can see from Figure 5.7, LRAM is smaller than the true area and  RRAM is
larger. MRAM appears to be the closest of the three approximations. However, observe
what happens as the number n of subintervals increases:

We computed the numbers in this table using a graphing calculator and a summing pro-
gram called RAM. A version of this program for most graphing calculators can be found
in the Technology Resource Manual that accompanies this textbook. All three sums
approach the same number (in this case, 9).

EXAMPLE 2 Estimating Area Under the Graph of a Nonnegative
Function

Figure 5.8 shows the graph of f �x) � x2 sin x on the interval �0, 3�. Estimate the area
under the curve from  x � 0  to  x � 3.

SOLUTION

We apply our RAM program to get the numbers in this table.

It is not necessary to compute all three sums each time just to approximate the area, but
we wanted to show again how all three sums approach the same number. With 1000 subin-
tervals, all three agree in the first three digits. (The exact area is �7 cos 3 � 6 sin 3 � 2,
which is 5.77666752456 to twelve digits.)                                         Now try Exercise 7.

n LRAMn MRAMn RRAMn

5 5.15480 5.89668 5.91685
10 5.52574 5.80685 5.90677
25 5.69079 5.78150 5.84320
50 5.73615 5.77788 5.81235

100 5.75701 5.77697 5.79511
1000 5.77476 5.77667 5.77857

n LRAMn MRAMn RRAMn

6 6.875 8.9375 11.375
12 7.90625 8.984375 10.15625
24 8.4453125 8.99609375 9.5703125
48 8.720703125 8.999023438 9.283203125

100 8.86545 8.999775 9.13545
1000 8.9865045 8.99999775 9.0135045

[0, 3] by [–1, 5]

Figure 5.8 The graph of y � x2 sin x
over the interval �0, 3�. (Example 2)

5128_CH05_262-319.qxd  1/13/06  12:46 PM  Page 266



Section 5.1 Estimating with Finite Sums 267

Volume of a Sphere
Although the visual representation of RAM approximation focuses on area, remember that
our original motivation for looking at sums of this type was to find distance traveled by an
object moving with a nonconstant velocity. The connection between Examples 1 and 2 is
that in each case, we have a function f defined on a closed interval and estimate what we
want to know with a sum of function values multiplied by interval lengths. Many other
physical quantities can be estimated this way.

EXAMPLE 3 Estimating the Volume of a Sphere

Estimate the volume of a solid sphere of radius 4.

SOLUTION

We picture the sphere as if its surface were generated by revolving the graph of the function
f �x� � �16	 �	 x	2	 about the x-axis (Figure 5.9a). We partition the interval �4 	 x 	 4
into n subintervals of equal length  �x � 8�n.  We then slice the sphere with planes perpen-
dicular to the x-axis at the partition points, cutting it like a round loaf of bread into n paral-
lel slices of width �x. When n is large, each slice can be approximated by a cylinder, a
familiar geometric shape of known volume, �r2h. In our case, the cylinders lie on their
sides and h is �x while r varies according to where we are on the x-axis (Figure 5.9b). A
logical radius to choose for each cylinder is f �mi� ��16	 �	 m	i

2	, where mi is the midpoint
of the interval where the ith slice intersects the x-axis (Figure 5.9c). 

We can now approximate the volume of the sphere by using MRAM to sum the cylin-
der volumes,

�r2h � ���16	 �	 m	i
2	�2�x.

The function we use in the RAM program is  ���16	 �	 x	2	�2 � ��16 � x2�. The inter-
val is ��4, 4�. 

Number of Slices (n) MRAMn

10 269.42299
25 268.29704
50 268.13619

100 268.09598
1000 268.08271

Which RAM is the Biggest?

You might think from the previous two RAM tables that LRAM is always a little
low and RRAM a little high, with MRAM somewhere in between. That, however,
depends on n and on the shape of the curve.

1. Graph  y � 5 � 4 sin �x�2� in the window �0, 3� by �0, 5�. Copy the graph on
paper and sketch the rectangles for the LRAM, MRAM, and RRAM sums with
n � 3.  Order the three approximations from greatest to smallest. 

2. Graph  y � 2 sin �5x� � 3  in the same window. Copy the graph on paper and
sketch the rectangles for the LRAM, MRAM, and RRAM sums with  n � 3.
Order the three approximations from greatest to smallest. 

3. If a positive, continuous function is increasing on an interval, what can we say
about the relative sizes of LRAM, MRAM, and RRAM? Explain.

4. If a positive, continuous function is decreasing on an interval, what can we say
about the relative sizes of LRAM, MRAM, and RRAM? Explain.

EXPLORATION 1

y � ⎯⎯⎯⎯⎯⎯16 � x2

x

y

–4 40

(a)

√

x216 �y =

x

y

(b)

⎯⎯⎯⎯⎯⎯√

x

y

4–4

mi
216 �mi,

mi

x16 � 2y = 

(c)

))
⎯⎯⎯⎯⎯⎯√

⎯⎯⎯⎯⎯⎯√

Figure 5.9 (a) The semicircle 
y � �1	6	 �	 x	2	 revolved about the x-axis
to generate a sphere. (b) Slices of the solid
sphere approximated with cylinders
(drawn for n � 8). (c) The typical 
approximating cylinder has radius 
f �mi� � �1	6	 �	 m	i

2	. (Example 3) continued
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c � f(t)

Figure 5.10 The dye concentration data from Table 5.2, plotted and fitted with a smooth curve.
Time is measured with t � 0 at the time of injection. The dye concentration is zero at the beginning
while the dye passes through the lungs. It then rises to a maximum at about t � 9 sec and tapers to
zero by t � 31 sec.

Table 5.2 Dye Concentration 
Data

Dye
Seconds Concentration

after (adjusted for
Injection recirculation)

t c

5 0
7 3.8
9 8.0

11 6.1
13 3.6
15 2.3
17 1.45
19 0.91
21 0.57
23 0.36
25 0.23
27 0.14
29 0.09
31 0

The value for  n � 1000  compares very favorably with the true volume,

V � �
4
3

� �r 3 � �
4
3

� ��4�3 � �
25

3
6�
� 
 268.0825731.

Even for  n � 10  the difference between the MRAM approximation and the true vol-
ume is a small percentage of V:

� 	 0.005.

That is, the error percentage is about one half of one percent!      Now try Exercise 13.

Cardiac Output
So far we have seen applications of the RAM process to finding distance traveled and vol-
ume. These applications hint at the usefulness of this technique. To suggest its versatility
we will present an application from human physiology. 

The number of liters of blood your heart pumps in a fixed time interval is called your
cardiac output. For a person at rest, the rate might be 5 or 6 liters per minute. During stren-
uous exercise the rate might be as high as 30 liters per minute. It might also be altered sig-
nificantly by disease. How can a physician measure a patient’s cardiac output without
interrupting the flow of blood?

One technique is to inject a dye into a main vein near the heart. The dye is  drawn into
the right side of the heart and pumped through the lungs and out the left side of the heart
into the aorta, where its concentration can be measured every few seconds as the blood
flows past. The data in Table 5.2 and the plot in Figure 5.10 (obtained from the data) show
the response of a healthy, resting patient to an injection of 5.6 mg of dye.

MRAM10 � 256��3
���

256��3

�MRAM10 � V �
��

V

Keeping Track of Units

Notice in Example 3 that we are sum-
ming products of the form p �16 � x2 �
(a cross section area, measured in
square units) times Dx (a length, meas-
ured in units). The products are there-
fore measured in cubic units, which are
the correct units for volume.

The graph shows dye concentration (measured in milligrams of dye per liter of blood)
as a function of time (in seconds). How can we use this graph to obtain the cardiac output
(measured in liters of blood per second)? The trick is to divide the number of mg of dye by
the area under the dye concentration curve. You can see why this works if you consider
what happens to the units:

�

� �
mg

s
o
e
f
c
dye

� • �
L
mg

of
o
b
f
l
d
o
y
o
e
d

�

� �
L of

se
b
c
lood
� .

So you are now ready to compute like a cardiologist.

mg of dye
��

�
L
mg

of
o
b
f
l
d
o
y
o
e
d

� • sec

mg of dye
���
units of area under curve
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EXAMPLE 4 Computing Cardiac Output from Dye Concentration

Estimate the cardiac output of the patient whose data appear in Table 5.2 and Figure
5.10. Give the estimate in liters per minute. 

SOLUTION

We have seen that we can obtain the cardiac output by dividing the amount of dye 
(5.6 mg for our patient) by the area under the curve in Figure 5.10. Now we need to
find the area. Our geometry formulas do not apply to this irregularly shaped region, and
the RAM program is useless without a formula for the function. Nonetheless, we can
draw the MRAM rectangles ourselves and estimate their heights from the graph. In
Figure 5.11 each rectangle has a base 2 units long and a height f �mi� equal to the
height of the curve above the midpoint of the base. 

Charles Richard Drew
(1904–1950)

Millions of people are
alive today because
of Charles Drew’s 
pioneering work on
blood plasma and the
preservation of human
blood for transfusion.
After directing the Red

Cross program that collected plasma 
for the Armed Forces in World War II, 
Dr. Drew went on to become Head of
Surgery at Howard University and Chief
of Staff at Freedmen’s Hospital in
Washington, D.C.
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Figure 5.11 The region under the concentration curve of Figure 5.10 is approximated with rec-
tangles. We ignore the portion from t � 29 to t � 31; its concentration is negligible. (Example 4)

The area of each rectangle, then, is f �mi� times 2, and the sum of the rectangular areas
is the MRAM estimate for the area under the curve:

Area � f �6� • 2 � f �8� • 2 � f �10� • 2 � … � f �28� • 2

� 2 • �1.4 � 6.3 � 7.5 � 4.8 � 2.8 � 1.9 � 1.1

� 0.7 � 0.5 � 0.3 � 0.2 � 0.1�

� 2 • �27.6� � 55.2 �mg�L� • sec.

Dividing 5.6 mg by this figure gives an estimate for cardiac output in liters per second.
Multiplying by 60 converts the estimate to liters per minute:

• �
6
1
0
m
s
i
e
n
c

� � 6.09 L�min.

Now try Exercise 15.

5.6 mg
��
55.2 mg • sec�L

Quick Review 5.1

As you answer the questions in Exercises 1–10, try to associate the
answers with area, as in Figure 5.1.

1. A train travels at 80 mph for 5 hours. How far does it travel?

2. A truck travels at an average speed of 48 mph for 3 hours. How
far does it travel?

3. Beginning at a standstill, a car maintains a constant acceleration
of 10 ft�sec2 for 10 seconds. What is its velocity after 10
seconds? Give your answer in ft�sec and then convert it to mi�h.

4. In a vacuum, light travels at a speed of 300,000 kilometers 
per second. How many kilometers does it travel in a year? 
(This distance equals one light-year.)

5. A long distance runner ran a race in 5 hours, averaging 
6 mph for the first 3 hours and 5 mph for the last 2 hours. How
far did she run?

6. A pump working at 20 gallons�minute pumps for an hour. How
many gallons are pumped?
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270 Chapter 5 The Definite Integral

7. At 8:00 P.M. the temperature began dropping at a rate of 1 degree
Celsius per hour. Twelve hours later it began rising at a rate of
1.5 degrees per hour for six hours. What was the net change in
temperature over the 18-hour period?

8. Water flows over a spillway at a steady rate of 300 cubic feet
per second. How many cubic feet of water pass over the
spillway in one day?

9. A city has a population density of 350 people per square mile
in an area of 50 square miles. What is the population of the
city?

10. A hummingbird in flight beats its wings at a rate of 70 times per
second. How many times does it beat its wings in an hour if it is
in flight 70% of the time?

Section 5.1 Exercises

1. A particle starts at x � 0 and moves along the x-axis with
velocity v(t) � 5 for time t � 0. Where is the particle at t � 4?

2. A particle starts at x � 0 and moves along the x-axis with velocity
v(t) � 2t � 1 for time t � 0. Where is the particle at t � 4?

3. A particle starts at x � 0 and moves along the x-axis with
velocity v(t) � t2 � 1 for time t � 0. Where is the particle at 
t � 4? Approximate the area under the curve using four
rectangles of equal width and heights determined by the
midpoints of the intervals, as in Example 1.

4. A particle starts at x � 0 and moves along the x-axis with
velocity v(t) � t2 � 1 for time t � 0. Where is the particle at 
t � 5? Approximate the area under the curve using five
rectangles of equal width and heights determined by the
midpoints of the intervals, as in Example 1.

Exercises 5–8 refer to the region R enclosed between the graph of
the function  y � 2x � x2 and the x-axis for  0 	 x 	 2.

5. (a) Sketch the region R. 

(b) Partition �0, 2� into 4 subintervals and show the four
rectangles that LRAM uses to approximate the area of R.
Compute the LRAM sum without a calculator.

6. Repeat Exercise 1(b) for RRAM and MRAM.

7. Using a calculator program, find the RAM sums that complete
the following table.

8. Make a conjecture about the area of the region R. 

In Exercises 9–12, use RAM to estimate the area of the region
enclosed between the graph of f and the x-axis for  a 	 x 	 b.

9. f �x� � x2 � x � 3, a � 0, b � 3

10. f �x� � �
1
x

� , a � 1, b � 3

11. f �x� � e�x2, a � 0, b � 2

12. f �x� � sin x, a � 0, b � �

13. (Continuation of Example 3) Use the slicing technique of
Example 3 to find the MRAM sums that approximate the

n LRAMn MRAMn RRAMn

10
50

100
500

volume of a sphere of radius 5. Use  n � 10, 20, 40, 80,
and 160.

14. (Continuation of Exercise 13) Use a geometry formula to find
the volumeV of the sphere in Exercise 13 and find (a) the error
and (b) the percentage error in the MRAM approximation for
each value of n given.

15. Cardiac Output The following table gives dye concentrations
for a dye-concentration cardiac-output determination like the
one in Example 4. The amount of dye injected in this patient
was 5 mg instead of 5.6 mg. Use rectangles to estimate the area
under the dye concentration curve and then go on to estimate the
patient’s cardiac output.

t

c

0

1

2
Time (sec)

D
ye

 c
on

ce
nt

ra
tio

n 
(m

g/
L

)

c � f(t)

4 6 8 10 12 14 16 18 20 22 24

2

3

4

Seconds after Dye Concentration
Injection (adjusted for recirculation)

t c

2 0
4 0.6
6 1.4
8 2.7

10 3.7
12 4.1
14 3.8
16 2.9
18 1.7
20 1.0
22 0.5
24 0
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16. Distance Traveled The table below shows the velocity of a
model train engine moving along a track for 10 sec. Estimate the
distance traveled by the engine, using 10 subintervals of length 1
with (a) left-endpoint values (LRAM) and (b) right-endpoint
values (RRAM).

17. Distance Traveled Upstream You are walking along the
bank of a tidal river watching the incoming tide carry a bottle
upstream. You record the velocity of the flow every 5 minutes
for an hour, with the results shown in the table below. About
how far upstream does the bottle travel during that hour? Find
the (a) LRAM and (b) RRAM estimates using 12 subintervals of
length 5.

18. Length of a Road You and a companion are driving along a
twisty stretch of dirt road in a car whose speedometer works but
whose odometer (mileage counter) is broken. To find out how
long this particular stretch of road is, you record the car’s
velocity at 10-sec intervals, with the results shown in the table
below. (The velocity was converted from mi �h to ft �sec using 
30 mi�h � 44 ft �sec.) Estimate the length of the road by
averaging the LRAM and RRAM sums.

19. Distance from Velocity Data The table below gives data for
the velocity of a vintage sports car accelerating from 
0 to 142 mi�h in 36 sec (10 thousandths of an hour.)

Time Velocity Time Velocity
�sec� �ft�sec� �sec� �ft�sec�

0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

Time Velocity Time Velocity
�min� �m�sec� �min� �m�sec�

0 1 35 1.2
5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4

Time Velocity Time Velocity
�sec� �in.�sec� �sec� �in.�sec�

0 0 6 11
1 12 7 6
2 22 8 2
3 10 9 6
4 5 10 0
5 13

(a) Use rectangles to estimate how far the car traveled during the
36 sec it took to reach 142 mi�h.

(b) Roughly how many seconds did it take the car to reach the
halfway point? About how fast was the car going then?

20. Volume of a Solid Hemisphere To estimate the volume of a
solid hemisphere of radius 4, imagine its axis of symmetry to be
the interval �0, 4� on the x-axis. Partition �0, 4� into eight
subintervals of equal length and approximate the solid with
cylinders based on the circular 
cross sections of the hemisphere 
perpendicular to the x-axis at the 
subintervals’ left endpoints. (See 
the accompanying profile view.)

(a) Writing to Learn Find the sum S8 of the volumes of the
cylinders. Do you expect S8 to overestimate V? Give reasons for
your answer.

(b) Express �V � S8 � as a percentage of V to the nearest
percent.

Time (h)

V
el

oc
ity

 (
m

ph
)

v

0

20

0.01

40

60

80

100

120

140

160

0.0080.0060.0040.002
t

Time Velocity Time Velocity
�h� �mi�h� �h� �mi�h�

0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108

x

y

0

–4

4 y � ⎯⎯⎯⎯⎯⎯⎯⎯16 � x2

4321

√
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21. Repeat Exercise 20 using cylinders based on cross sections at
the right endpoints of the subintervals.

22. Volume of Water in a Reservoir A reservoir shaped like a
hemispherical bowl of radius 8 m is filled with water to a depth
of 4 m. 

(a) Find an estimate S of the water’s volume by approximating
the water with eight circumscribed solid cylinders.

(b) It can be shown that the water’s volume is  V � �320���3 m3.
Find the error �V � S � as a percentage of V to the nearest
percent.

23. Volume of Water in a Swimming Pool A rectangular
swimming pool is 30 ft wide and 50 ft long. The table below
shows the depth h�x� of the water at 5-ft intervals from one end
of the pool to the other. Estimate the volume of water in the pool
using (a) left-endpoint values and (b) right-endpoint values.

24. Volume of a Nose Cone The nose “cone” of a rocket is a
paraboloid obtained by revolving the curve  y � �x	, 0 	 x 	 5
about the x-axis, where x is measured in feet. Estimate the
volume V of the nose cone by partitioning �0, 5� into five
subintervals of equal length, slicing the cone with planes
perpendicular to the x-axis at the subintervals’ left endpoints,
constructing cylinders of height 1 based on cross sections at
these points, and finding the volumes of these cylinders. 
(See the accompanying figure.)

25. Volume of a Nose Cone Repeat Exercise 24 using cylinders
based on cross sections at the midpoints of the subintervals.

26. Free Fall with Air Resistance An object is dropped straight
down from a helicopter. The object falls faster and faster but its
acceleration (rate of change of its velocity) decreases over time 

x

y

0 2

y � √⎯x

3 4 51

Position �ft� Depth �ft� Position �ft� Depth �ft�
x h�x� x h�x�

0 6.0 30 11.5
5 8.2 35 11.9

10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0

because of air resistance. The acceleration is measured in
ft �sec2 and recorded every second after the drop for 5 sec, as
shown in the table below.

(a) Use LRAM5 to find an upper estimate for the speed when 
t � 5.

(b) Use RRAM5 to find a lower estimate for the speed 
when  t � 5.

(c) Use upper estimates for the speed during the first second,
second second, and third second to find an upper estimate for
the distance fallen when  t � 3.

27. Distance Traveled by a Projectile An object is shot
straight upward from sea level with an initial velocity of 400
ft/sec.

(a) Assuming gravity is the only force acting on the object, give
an upper estimate for its velocity after 5 sec have elapsed. Use 
g � 32 ft �sec2 for the gravitational constant.

(b) Find a lower estimate for the height attained after 5 sec.

28. Water Pollution Oil is leaking out of a tanker damaged at sea.
The damage to the tanker is worsening as evidenced by the
increased leakage each hour, recorded in the table below.

(a) Give an upper and lower estimate of the total quantity of oil
that has escaped after 5 hours.

(b) Repeat part (a) for the quantity of oil that has escaped after 
8 hours.

(c) The tanker continues to leak 720 gal�h after the first 
8 hours. If the tanker originally contained 25,000 gal of oil,
approximately how many more hours will elapse in the worst
case before all of the oil has leaked? in the best case?

29. Air Pollution A power plant generates electricity by burning
oil. Pollutants produced by the burning process are removed by
scrubbers in the smokestacks. Over time the scrubbers become
less efficient and eventually must be replaced when the amount
of pollutants released exceeds government standards.
Measurements taken at the end of each month determine the rate
at which pollutants are released into the atmosphere as recorded
in the table below.

Month Jan Feb Mar Apr May Jun

Pollutant
Release Rate 0.20 0.25 0.27 0.34 0.45 0.52
(tons�day)

Month Jul Aug Sep Oct Nov Dec

Pollutant
Release Rate 0.63 0.70 0.81 0.85 0.89 0.95
(tons�day)

Time (h) ⏐ 5 6 7 8
Leakage (gal�h) ⏐ 265 369 516 720

Time (h) ⏐ 0 1 2 3 4
Leakage (gal�h) ⏐ 50 70 97 136 190

t ⏐ 0 1 2 3 4 5
a ⏐ 32.00 19.41 11.77 7.14 4.33 2.63
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(a) Assuming a 30-day month and that new scrubbers allow only
0.05 ton�day released, give an upper estimate of the total
tonnage of pollutants released by the end of June. What is a
lower estimate?

(b) In the best case, approximately when will a total of 125 tons
of pollutants have been released into the atmosphere?

30. Writing to Learn The graph shows the sales record for a
company over a 10-year period. If sales are measured in
millions of units per year, explain what information can be
obtained from the area of the region, and why.

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

31. True or False If f is a positive, continuous, increasing
function on [a, b], then LRAM gives an area estimate that is 
less than the true area under the curve. Justify your answer.

32. True or False For a given number of rectangles, MRAM
always gives a more accurate approximation to the true area
under the curve than RRAM or LRAM. Justify your answer.

33. Multiple Choice If an MRAM sum with four rectangles of
equal width is used to approximate the area enclosed between
the x-axis and the graph of y � 4x � x2, the approximation is

(A) 10 (B) 10.5 (C) 10.6	 (D) 10.75 (E) 11

34. Multiple Choice If f is a positive, continuous function on an
interval [a, b], which of the following rectangular approximation
methods has a limit equal to the actual area under the curve from
a to b as the number of rectangles approaches infinity?

III. LRAM

III. RRAM

III. MRAM

(A) I and II only

(B) III only

(C) I and III only

(D) I, II, and III

(E) None of these

sales

100

20

time

35. Multiple Choice An LRAM sum with 4 equal subdivisions is
used to approximate the area under the sine curve from x � 0 to
x � p. What is the approximation?

(A) �
p

4
��0 � �

p

4
� � �
p

2
� � �

3
4
p
� (B) �

p

4
��0 � �

1
2

� � �
�
2
3	

� � 1
(C) �
p

4
��0 � �

�
2
2	

� � 1 � �
�
2
2	

� (D) �
p

4
��0 � �

1
2

� � �
�
2
2	

� � �
�
2
3	

�
(E) �
p

4
���

1
2

� � �
�
2
2	

� � �
�
2
3	

� � 1
36. Multiple Choice A truck moves with positive velocity v(t)

from time t � 3 to time t � 15. The area under the graph of 
y � v(t) between 3 and 15 gives

(A) the velocity of the truck at t � 15.

(B) the acceleration of the truck at t � 15.

(C) the position of the truck at t � 15.

(D) the distance traveled by the truck from t � 3 to t � 15.

(E) the average position of the truck in the interval from 
t � 3 to t � 15.

Exploration
37. Group Activity Area of a Circle Inscribe a regular 

n-sided polygon inside a circle of radius 1 and compute the area
of the polygon for the following values of n.

(a) 4 (square) (b) 8 (octagon) (c) 16

(d) Compare the areas in parts (a), (b), and (c) with the area of
the circle.

Extending the Ideas
38. Rectangular Approximation Methods Prove or disprove

the following statement: MRAMn is always the average of
LRAMn and RRAMn.

39. Rectangular Approximation Methods Show that if f is a
nonnegative function on the interval �a, b� and the line  
x � �a � b��2 is a line of symmetry of the graph of  y � f �x�,
then  LRAMn f � RRAMn f for every positive integer n.

40. (Continuation of Exercise 37)

(a) Inscribe a regular n-sided polygon inside a circle of radius 1
and compute the area of one of the n congruent triangles formed
by drawing radii to the vertices of the polygon.

(b) Compute the limit of the area of the inscribed polygon 
as  n→∞.

(c) Repeat the computations in parts (a) and (b) for a circle of
radius r.
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274 Chapter 5 The Definite Integral

Definite Integrals

Riemann Sums
In the preceding section, we estimated distances, areas, and volumes with finite sums. The
terms in the sums were obtained by multiplying selected function values by the lengths of
intervals. In this section we move beyond finite sums to see what happens in the limit, as the
terms become infinitely small and their number infinitely large. 

Sigma notation enables us to express a large sum in compact form:

5.2
What you’ll learn about

• Riemann Sums

• Terminology and Notation of
Integration

• The Definite Integral

• Computing Definite Integrals on
a Calculator

• Integrability

. . . and why

The definite integral is the basis
of integral calculus, just as the
derivative is the basis of 
differential calculus.

The Greek capital letter � (sigma) stands for “sum.” The index k tells us where to begin
the sum (at the number below the �) and where to end (at the number above). If the sym-
bol ∞ appears above the �, it indicates that the terms go on indefinitely. 

The sums in which we will be interested are called Riemann (“ree-mahn”) sums, after
Georg Friedrich Bernhard Riemann (1826–1866). LRAM, MRAM, and RRAM in the pre-
vious section are all examples of Riemann sums—not because they estimated area, but
because they were constructed in a particular way. We now describe that construction for-
mally, in a more general context that does not confine us to nonnegative functions. 

We begin with an arbitrary continuous function f �x� defined on a closed interval �a, b�.
Like the function graphed in Figure 5.12, it may have negative values as well as positive
values. 

�
n

k�1

ak � a1 � a2 � a3 � … � an�1 � an.

We then partition the interval �a, b� into n subintervals by choosing n � 1 points, say x1,
x2, …, xn�1, between a and b subject only to the condition that 

a � x1 � x2 � … � xn�1 � b.

To make the notation consistent, we denote a by x0 and b by xn. The set 

P � {x0, x1, x2, …, xn}

is called a partition of �a, b�.

x

y

 ba

y � f (x)  

Figure 5.12 The graph of a typical function y � f �x� over a closed interval �a, b�.
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The partition P determines n closed subintervals, as shown in Figure 5.13. The kth

subinterval is �xk�1, xk�, which has length �xk � xk � xk�1.

x

�xn

xn � bxn�1

�xk

xk�1 xk

�x2

x 2x1

�x1

x0 � a • • • • • •

Figure 5.13 The partition P � {a � x0, x1, x2, …, xn � b} divides �a, b� into 
n subintervals of lengths �x1, �x2, …, �xn. The kth subinterval has length �xk .

In each subinterval we select some number. Denote the number chosen from the kth

subinterval by ck.
Then, on each subinterval we stand a vertical rectangle that reaches from the x-axis to

touch the curve at �ck, f �ck ��. These rectangles could lie either above or below the x-axis
(Figure 5.14).

x

y
y � f(x)

0 xn � bx0 � a x1 x2

c1 c2 ck

(c2,  f (c2))

(c1, f(c1))

cn

xn – 1xk

(cn,  f(cn))

(ck ,  f(ck))

k th rectangle

xk – 1

Figure 5.14 Rectangles extending from the x-axis to intersect the curve at the
points �ck , f �ck��. The rectangles approximate the region between the x-axis and the
graph of the function.

On each subinterval, we form the product f �ck � • �xk . This product can be positive,
negative, or zero, depending on f �ck�.

Finally, we take the sum of these products:

Sn � �
n

k�1

f �ck� • �xk.

This sum, which depends on the partition P and the choice of the numbers ck , is a
Riemann sum for f on the interval [a, b].

As the partitions of �a, b� become finer and finer, we would expect the rectangles
defined by the partitions to approximate the region between the x-axis and the graph of f
with increasing accuracy (Figure 5.15).

Just as LRAM, MRAM, and RRAM in our earlier examples converged to a common
value in the limit, all Riemann sums for a given function on �a, b� converge to a common
value, as long as the lengths of the subintervals all tend to zero. This latter condition is
assured by requiring the longest subinterval length (called the norm of the partition and
denoted by ��P ��) to tend to zero. 

(a)

0 a

y

x
b

y � f (x)

(b)

0

y � f(x)

a

y

x
b

Figure 5.15 The curve of Figure 5.12
with rectangles from finer partitions of 
�a, b�. Finer partitions create more rectan-
gles, with shorter bases.
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276 Chapter 5 The Definite Integral

Despite the potential for variety in the sums � f �ck��xk as the partitions change and as
the ck’s are chosen arbitrarily in the intervals of each partition, the sums always have the
same limit as ��P ��→0 as long as f is continuous on �a, b�.

THEOREM 1 The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continuous on an in-
terval �a, b�, then its definite integral over �a, b� exists.

The Definite Integral of a Continuous Function on [a, b]

Let f be continuous on �a, b�, and let �a, b� be partitioned into n subintervals of
equal length  �x � �b � a��n.  Then the definite integral of f over �a, b� is given by 

lim
n→∞ �

n

k�1

f �ck��x,

where each ck is chosen arbitrarily in the k th subinterval.

Because of Theorem 1, we can get by with a simpler construction for definite integrals
of continuous functions. Since we know for these functions that the Riemann sums tend to
the same limit for all partitions in which ��P ��→0, we need only to consider the limit of the
so-called regular partitions, in which all the subintervals have the same length.

Terminology and Notation of Integration
Leibniz’s clever choice of notation for the derivative, dy�dx, had the advantage of retaining
an identity as a “fraction” even though both numerator and denominator had tended to zero.
Although not really fractions, derivatives can behave like fractions, so the notation makes
profound results like the Chain Rule

�
d
dy

x
� � �

d
d

u
y
� • �

d
d

u
x
�

seem almost simple.

Georg Riemann (1826-1866)

The mathematicians 
of the 17th and 18th
centuries blithely as-
sumed the existence of
limits of Riemann sums 
(as we admittedly did in
our RAM explorations of
the last section), but

the existence was not established 
mathematically until Georg Riemann
proved Theorem 1 in 1854. You can find
a current version of Riemann’s proof in
most advanced calculus books.

DEFINITION The Definite Integral as a Limit of Riemann Sums

Let f be a function defined on a closed interval �a, b�. For any partition P of �a, b�,
let the numbers ck be chosen arbitrarily in the subintervals �xk�1, xk�.

If there exists a number I such that 

lim
�� P ��→0 �

n

k�1

f �ck��xk � I

no matter how P and the ck’s are chosen, then f is integrable on �a, b� and I is the
definite integral of f over �a, b�.
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The notation that Leibniz introduced for the definite integral was equally inspired. In his
derivative notation, the Greek letters (“�” for “difference”) switch to Roman letters (“d”
for “differential”) in the limit,

lim
�x→0

�
�
�y

x
� � �

d
dy

x
� .

In his definite integral notation, the Greek letters again become Roman letters in the
limit,

lim
n→∞ �

n

k�1

f �ck��x � �b

a

f �x� dx.

Notice that the difference Dx has again tended to zero, becoming a differential dx. The
Greek “�” has become an elongated Roman “S,” so that the integral can retain its identity
as a “sum.” The ck’s have become so crowded together in the limit that we no longer think of
a choppy selection of x values between a and b, but rather of a continuous, unbroken sam-
pling of x values from a to b. It is as if we were summing all products of the form f �x� dx as
x goes from a to b, so we can abandon the k and the n used in the finite sum expression. 

The symbol

�b

a

f �x� dx

is read as “the integral from a to b of f of x dee x,” or sometimes as “the integral from a to
b of f of x with respect to x.” The component parts also have names:

�b

a

f �x� dx

The value of the definite integral of a function over any particular interval depends on
the function and not on the letter we choose to represent its independent variable. If we
decide to use t or u instead of x, we simply write the integral as

�b

a

f �t� dt or �b

a

f �u� du instead of �b

a

f �x� dx.

No matter how we represent the integral, it is the same number, defined as a limit of Riemann
sums. Since it does not matter what letter we use to run from a to b, the variable of integra-
tion is called a dummy variable.

EXAMPLE 1 Using the Notation

The interval ��1, 3� is partitioned into n subintervals of equal length Dx � 4�n.  Let mk

denote the midpoint of the k th subinterval. Express the limit

lim
n→∞ �

n

k�1

�3�mk�2 � 2mk � 5� �x

as an integral.

Upper limit of integration The function is the integrand.

x is the variable of integration.
Integral sign

Lower limit of integration

Integral of f from a to b

When you find the value
of the integral, you have
evaluated the integral.

continued
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278 Chapter 5 The Definite Integral

SOLUTION

Since the midpoints mk have been chosen from the subintervals of the partition, this
expression is indeed a limit of Riemann sums. (The points chosen did not have to be
midpoints; they could have been chosen from the subintervals in any arbitrary fashion.)
The function being integrated is f �x� � 3x2 � 2x � 5 over the interval ��1, 3�.
Therefore,

lim
n→∞ �

n

k�1

�3�mk�2 � 2mk � 5� �x � �3

�1

�3x2 � 2x � 5� dx.

Now try Exercise 5.

Definite Integral and Area
If an integrable function y � f �x� is nonnegative throughout an interval �a, b�, each
nonzero term f �ck��xk is the area of a rectangle reaching from the x-axis up to the curve
y � f �x�. (See Figure 5.16.)

The Riemann sum 

� f �ck� �xk ,

which is the sum of the areas of these rectangles, gives an estimate of the area of the region
between the curve and the x-axis from a to b. Since the rectangles give an increasingly
good approximation of the region as we use partitions with smaller and smaller norms, we
call the limiting value the area under the curve.

This definition works both ways: We can use integrals to calculate areas and we can use
areas to calculate integrals.

EXAMPLE 2 Revisiting Area Under a Curve

Evaluate the integral �2
�2�4	 �	 x	2	 dx.

SOLUTION

We recognize f �x� � �4	 �	 x	2	 as a function whose graph is a semicircle of radius 2
centered at the origin (Figure 5.17�.
The area between the semicircle and the x-axis from �2 to 2 can be computed using
the geometry formula

Area � �
1
2

� • �r2 � �
1
2

� • ��2�2 � 2�.

Because the area is also the value of the integral of f from �2 to 2,

�2

�2

�4	 �	 x	2	 dx � 2�.              Now try Exercise 15.

y

x
0

�xk

xkckxk–1

f (ck )

(ck , f (ck))

y =  f(x)

[–3, 3] by [–1, 3]

Figure 5.16 A term of a Riemann sum 
� f �ck��xk for a nonnegative function f
is either zero or the area of a rectangle
such as the one shown.

Figure 5.17 A square viewing window 
on y � �4	 �	 x	2	. The graph is a semicir-
cle because y � �4	 �	 x	2	 is the same as 
y2 � 4 � x2, or x2 � y2 � 4, with y � 0.
(Example 2)

DEFINITION Area Under a Curve (as a Definite Integral)

If  y � f �x� is nonnegative and integrable over a closed interval �a, b�, then the area
under the curve  y � f �x� from a to b is the integral of f from a to b,

A � �b

a

f �x� dx.
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Section 5.2 Definite Integrals 279

If an integrable function y � f �x� is nonpositive, the nonzero terms f �ck ��xk in the
Riemann sums for f over an interval �a, b� are negatives of rectangle areas. The limit of the
sums, the integral of f from a to b, is therefore the negative of the area of the region
between the graph of f and the x-axis (Figure 5.18).

�b

a

f �x� dx � �(the area) if f �x� 	 0.

Or, turning this around,

y =  cos x

�
2

y

x
0

1

3�
2

Figure 5.18 Because f �x� � cos x is
nonpositive on ���2, 3��2�, the integral of
f is a negative number. The area of the
shaded region is the opposite of this 
integral,

Area � ��3��2

��2

cos x dx.

Area � ��b

a

f �x� dx when f �x� 	 0.

�b

a

f �x� dx � (area above the x-axis) � (area below the x-axis).

If an integrable function y � f �x� has both positive and negative values on an interval 
�a, b�, then the Riemann sums for f on �a, b� add areas of rectangles that lie above the x-axis
to the negatives of areas of rectangles that lie below the x-axis, as in Figure 5.19. The result-
ing cancellations mean that the limiting value is a number whose magnitude is less than the
total area between the curve and the x-axis. The value of the integral is the area above the
x-axis minus the area below. 

For any integrable function,

Finding Integrals by Signed Areas

It is a fact (which we will revisit) that  ��

0 sin x dx � 2  (Figure 5.20). With that in-
formation, what you know about integrals and areas, what you know about graph-
ing curves, and sometimes a bit of intuition, determine the values of the following
integrals. Give as convincing an argument as you can for each value, based on the
graph of the function. 

1. �2�

�

sin x dx 2. �2�

0

sin x dx 3. ���2

0

sin x dx

4. ��

0

�2 � sin x� dx 5. ��

0

2 sin x dx 6. ���2

2

sin �x � 2� dx

7. ��

��

sin u du 8. �2�

0

sin �x�2� dx 9. ��

0

cos x dx

10. Suppose k is any positive number. Make a conjecture about �k
�k sin x dx  and

support your conjecture.

EXPLORATION 1

x

y

0

y � f (x)

If f (ck) � 0, f (ck)�xk is an area…

…but if f(ck) 	 0, f(ck)�xk is
the negative of an area.

a b

Net Area

Sometimes �b
a f �x� dx is called the 

net area of the region determined 
by the curve y � f �x� and the 
x-axis between x � a and x � b.

Figure 5.19 An integrable function f
with negative as well as positive values.

[–  ,   ] by [–1.5, 1.5]

y � sin x

� �

Figure 5.20

��

0
sin x dx � 2. (Exploration 1)
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280 Chapter 5 The Definite Integral

Constant Functions
Integrals of constant functions are easy to evaluate. Over a closed interval, they are sim-
ply the constant times the length of the interval (Figure 5.21).

Figure 5.21 (a) If c is a positive con-
stant, then �b

a c dx is the area of the rectan-
gle shown. (b) If c is negative, then �b

a c dx
is the opposite of the area of the rectangle.

x

y

y

x

c

c

(a, c)

(a, c) (b, c)

(b, c)

a

a b

b

(a)

(b)

A = c(b–a) =      b
a

c dx⌠⌡

⌠⌡A = (–c)(b–a) = –     b
a

c dx

THEOREM 2 The Integral of a Constant

If f �x� � c, where c is a constant, on the interval �a, b�, then

�b

a

f �x� dx � �b

a

c dx � c�b � a�.

Proof A constant function is continuous, so the integral exists, and we can evaluate it as a
limit of Riemann sums with subintervals of equal length �b � a��n. Any such sum looks like

�
n

k�1

f �ck� • �x, which is �
n

k�1

c • �
b �

n
a

� .

Then

�
n

k�1

c • �
b �

n
a

� � c • �b � a��
n

k�1

�
1
n

� 

� c�b � a� • n ( �
1
n

� )
� c�b � a�.

Since the sum is always c�b � a� for any value of n, it follows that the limit of the sums,
the integral to which they converge, is also c�b � a�. ■

EXAMPLE 3 Revisiting the Train Problem
A train moves along a track at a steady 75 miles per hour from 7:00 A.M. to 9:00 A.M.
Express its total distance traveled as an integral. Evaluate the integral using Theorem 2. 

SOLUTION (See Figure 5.22.) 

velocity (mph)

75

7 9

time (h)

Distance traveled � �9

7

75 dt � 75 • �9 � 7� � 150

Since the 75 is measured in miles�hour and the �9 � 7� is measured in hours, the 150
is measured in miles. The train traveled 150 miles.                      Now try Exercise 29.

Figure 5.22 The area of the rectangle is a special case of Theorem 2. (Example 3)
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Integrals on a Calculator
You do not have to know much about your calculator to realize that finding the limit of a
Riemann sum is exactly the kind of thing that it does best. We have seen how effectively it
can approximate areas using MRAM, but most modern calculators have sophisticated built-
in programs that converge to integrals with much greater speed and precision than that. We
will assume that your calculator has such a numerical integration capability, which we will
denote as NINT. In particular, we will use NINT � f �x�, x, a, b� to denote a calculator (or
computer) approximation of �b

a f �x� dx. When we write

�b

a

f �x� dx � NINT � f �x�, x, a, b�,

we do so with the understanding that the right-hand side of the equation is an approxima-
tion of the left-hand side. 

EXAMPLE 4 Using NINT

Evaluate the following integrals numerically.

(a) �2

�1

x sin x dx (b) �1

0

�
1 �

4
x2� dx (c) �5

0

e�x2 dx

SOLUTION

(a) NINT �x sin x, x, �1, 2� 
 2.04

(b) NINT �4��1 � x2�, x, 0, 1� 
 3.14

(c) NINT �e�x 2, x, 0, 5� 
 0.89                                                  Now try Exercise 33.

We will eventually be able to confirm that the exact value for the integral in Example 4a
is �2 cos 2 � sin 2 � cos 1 � sin 1. You might want to conjecture for yourself what the
exact answer to Example 4b might be. As for Example 4c, no explicit exact value has ever
been found for this integral! The best we can do in this case (and in many like it) is to
approximate the integral numerically. Here, technology is not only useful, it is essential. 

Discontinuous Integrable Functions
Theorem 1 guarantees that all continuous functions are integrable. But some functions with
discontinuities are also integrable. For example, a bounded function (see margin note) that
has a finite number of points of discontinuity on an interval �a, b� will still be integrable on
the interval if it is continuous everywhere else.

EXAMPLE 5 Integrating a Discontinuous Function

Find  �2

�1

dx.

SOLUTION

This function has a discontinuity at  x � 0, where the graph jumps from  y � �1  to  
y � 1.  The graph, however, determines two rectangles, one below the x-axis and one
above (Figure 5.23). 

Using the idea of net area, we have

�2

�1

dx � �1 � 2 � 1.            Now try Exercise 37.
�x �
�
x

�x �
�
x

Bounded Functions

We say a function is bounded on a
given domain if its range is confined be-
tween some minimum value m and
some maximum value M. That is, given
any x in the domain, m 	 f �x� 	 M.
Equivalently, the graph of y � f �x� lies
between the horizontal lines y � m and
y � M.

y = |x|/x

[–1, 2] by [–2, 2]

Figure 5.23 A discontinuous integrable
function:

�2

�1

�
�x
x
�

� dx � �(area below x-axis) �
(area above x-axis).

(Example 5)
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In Exercises 1–3, evaluate the sum.

1. �
5

n�1

n2 2. �
4

k�0

�3k � 2�

3. �
4

j�0

100 � j � 1�2

In Exercises 4–6, write the sum in sigma notation.

4. 1 � 2 � 3 � … � 98 � 99

5. 0 � 2 � 4 � … � 48 � 50

6. 3�1�2 � 3�2�2 � … � 3�500�2

More Discontinuous Integrands

1. Explain why the function

f �x� � �
x
x

2

�

�

2
4

�

is not continuous on �0, 3�. What kind of discontinuity occurs?

2. Use areas to show that 

�3

0

�
x
x

2

�

�

2
4

� dx � 10.5.

3. Use areas to show that

�5

0

int �x� dx � 10. 

EXPLORATION 2

A Nonintegrable Function

How “bad” does a function have to be
before it is not integrable? One way to
defeat integrability is to be unbounded
(like y � 1�x near x � 0), which can pre-
vent the Riemann sums from tending to
a finite limit. Another, more subtle, way
is to be bounded but badly discontinu-
ous, like the characteristic function of
the rationals:

1 if x is rationalf �x� � {0 if x is irrational.

No matter what partition we take of the
closed interval �0, 1�, every subinterval
contains both rational and irrational
numbers. That means that we can 
always form a Riemann sum with all 
rational ck’s (a Riemann sum of 1) or all
irrational ck’s (a Riemann sum of 0). 
The sums can therefore never tend 
toward a unique limit.

Quick Review 5.2

In Exercises 7 and 8, write the expression as a single sum in sigma
notation.

7. 2�
50

x�1

x2 � 3�
50

x�1

x 8. �
8

k�0

xk � �
20

k�9

xk

9. Find �
n

k�0

��1�k if n is odd.

10. Find �
n

k�0

��1�k if n is even.

Section 5.2 Exercises

In Exercises 1–6, each ck is chosen from the kth subinterval of a
regular partition of the indicated interval into n subintervals of length
�x. Express the limit as a definite integral.

1. lim
n→∞ �

n

k�1

ck
2�x, �0, 2�

2. lim
n→∞ �

n

k�1

�ck
2 � 3ck� �x, ��7, 5�

3. lim
n→∞ �

n

k�1

�
c
1

k
� �x, �1, 4�

4. lim
n→∞ �

n

k�1

�
1 �

1
ck

� �x, �2, 3�

5. lim
n→∞ �

n

k�1

�4	 �	 c	k
2	 �x, �0, 1�

6. lim
n→∞ �

n

k�1

�sin3 ck� �x, ���, ��

In Exercises 7–12, evaluate the integral.

7. �1

�2

5 dx 8. �7

3

��20� dx

9. �3

0

��160� dt 10. ��1

�4

�
�

2
� du

11. �3.4

�2.1

0.5 ds 12. �
�2	

�1	8	

�2	 dr
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In Exercises 13–22, use the graph of the integrand and areas to
evaluate the integral.

13. � 4

�2
( �

2
x

� � 3) dx 14. � 3�2

1�2

��2x � 4� dx

15. � 3

�3

�9	 �	 x	2	 dx 16. � 0

�4

�1	6	 �	 x	2	 dx

17. �1

�2

�x � dx 18. �1

�1

�1 � �x �� dx

19. �1

�1

�2 � � x �� dx 20. �1

�1

�1 � �1	 �	 x	2	� dx

21. �2�

�

u du 22. �
�2	

5�2	

r dr

In Exercises 23–28, use areas to evaluate the integral.

23. �b

0

x dx, b � 0 24. �b

0

4x dx, b � 0

25. �b

a

2s ds, 0 
 a 
 b 26. �b

a

3t dt, 0 
 a 
 b

27. �2a

a

x dx, a � 0 28. �
a

�3	a

x dx, a � 0

In Exercises 29–32, express the desired quantity as a definite integral
and evaluate the integral using Theorem 2. 

29. Find the distance traveled by a train moving at 87 mph from
8:00 A.M. to 11:00 A.M.

30. Find the output from a pump producing 25 gallons per minute
during the first hour of its operation.

31. Find the calories burned by a walker burning 300 calories per
hour between 6:00 P.M. and 7:30 P.M.

32. Find the amount of water lost from a bucket leaking 0.4 liters
per hour between 8:30 A.M. and 11:00 A.M.

In Exercises 33–36, use NINT to evaluate the expression.

33. �5

0

�
x2 �

x
4

� dx 34. 3 � 2���3

0

tan x dx

35. Find the area enclosed between the x-axis and the graph of  
y � 4 � x2 from x � �2  to  x � 2.

36. Find the area enclosed between the x-axis and the graph of  
y � x2e�x from x � �1  to  x � 3.

In Exercises 37–40, (a) find the points of discontinuity of the
integrand on the interval of integration, and (b) use area to evaluate
the integral.

37. �3

�2

dx 38. �5

�6

2 int �x � 3� dx

39. � 4

�3

�
x
x

2

�

�

1
1

� dx 40. �6

�5

�
9
x

�

�

x
3

2
� dx

x
�
�x �

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

41. True or False If �b
a f �x� dx � 0, then f (x) is positive for all x

in [a, b]. Justify your answer.

42. True or False If f (x) is positive for all x in [a, b], then 
�b
a f �x� dx � 0. Justify your answer.

43. Multiple Choice If �5
2  f �x� dx � 18, then �5

2 �f �x� � 4� dx �

(A) 20 (B) 22 (C) 23 (D) 25 (E) 30

44. Multiple Choice �4
�4  �4 � � x �� dx �

(A) 0 (B) 4 (C) 8 (D) 16 (E) 32

45. Multiple Choice If the interval [0, �] is divided into n
subintervals of length ��n and ck is chosen from the kth
subinterval, which of the following is a Riemann sum?

(A) �
n

k�1 

sin(ck) (B) �
∞

k�1 

sin(ck) (C) �
n

k�1 

sin(ck)��
�

n
�

(D) �
n

k�1 

sin��
�

n
�(ck) (E) �

n

k�1 

sin(ck)��
�

k
�

46. Multiple Choice Which of the following quantities would not
be represented by the definite integral �8

0 70 dt?

(A) The distance traveled by a train moving at 70 mph for 
8 minutes.

(B) The volume of ice cream produced by a machine making 70
gallons per hour for 8 hours.

(C) The length of a track left by a snail traveling at 70 cm per
hour for 8 hours.

(D) The total sales of a company selling $70 of merchandise per
hour for 8 hours.

(E) The amount the tide has risen 8 minutes after low tide if it
rises at a rate of 70 mm per minute during that period.

Explorations
In Exercises 47–56, use graphs, your knowledge of area, and the fact
that � 1

0

x3 dx � �
1
4

�

to evaluate the integral.

47. �1

�1

x3 dx 48. �1

0

�x3 � 3� dx

49. �3

2

�x � 2�3 dx 50. �1

�1

�x �3 dx

51. �1

0

�1 � x3� dx 52. �2

�1

��x �� 1�3 dx

53. �2

0
( �

2
x

� )
3

dx 54. �8

�8

x3 dx

55. �1

0

�x3 � 1� dx 56. �1

0

�3 x	 dx
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Extending the Ideas
57. Writing to Learn The function 

�
x
1
2� , 0 
 x 	 1

f �x� � {0, x � 0

is defined on �0, 1� and has a single point of discontinuity 
at  x � 0. 

(a) What happens to the graph of f as x approaches 0 from 
the right?

(b) The function f is not integrable on �0, 1�. Give a convincing
argument based on Riemann sums to explain why it is not.

58. It can be shown by mathematical induction (see 
Appendix 2) that

�
n

k�1

k2 ��
n�n � 1�

6
�2n � 1�
� .

Use this fact to give a formal proof that 

�1

0

x2 dx � �
1
3

�

by following the steps given in the next column.

(a) Partition �0, 1� into n subintervals of length 1�n. Show that
the RRAM Riemann sum for the integral is

�
n

k�1
(( �

n
k

� )
2

• �
1
n

� ) .

(b) Show that this sum can be written as

�
n
1

3� • �
n

k�1

k2.

(c) Show that the sum can therefore be written as

�
�n � 1

6
�
n2
�2n � 1�
� .

(d) Show that

lim
n→∞ �

n

k�1
(( �

n
k

� )
2

• �
1
n

� ) � �
1
3

� .

(e) Explain why the equation in part (d) proves that

�1

0

x2 dx � �
1
3

� .
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Definite Integrals and Antiderivatives

Properties of Definite Integrals
In defining �b

a f �x� as a limit of sums � ck �xk , we moved from left to right across the
interval �a, b�. What would happen if we integrated in the opposite direction? The integral
would become �a

b f �x� dx—again a limit of sums of the form � f �ck ��xk—but this time
each of the �xk’s would be negative as the x-values decreased from b to a. This would
change the signs of all the terms in each Riemann sum, and ultimately the sign of the def-
inite integral. This suggests the rule 

�a

b

f �x� dx � ��b

a

f �x� dx.

Since the original definition did not apply to integrating backwards over an interval, we
can treat this rule as a logical extension of the definition.

Although �a, a� is technically not an interval, another logical extension of the definition
is that �a

a f �x� dx � 0.
These are the first two rules in Table 5.3. The others are inherited from rules that hold

for Riemann sums. However, the limit step required to prove that these rules hold in the
limit (as the norms of the partitions tend to zero) places their mathematical verification
beyond the scope of this course. They should make good sense nonetheless.

5.3
What you’ll learn about

• Properties of Definite Integrals

• Average Value of a Function

• Mean Value Theorem for 
Definite Integrals

• Connecting Differential and 
Integral Calculus

. . . and why

Working with the properties of
definite integrals helps us to 
understand better the definite 
integral. Connecting derivatives
and definite integrals sets the
stage for the Fundamental 
Theorem of Calculus.

Table 5.3 Rules for Definite Integrals

1. Order of Integration: �a

b

f �x� dx � ��b

a

f �x� dx A definition

2. Zero: �a

a

f �x� dx � 0 Also a definition

3. Constant Multiple: �b

a

kf �x� dx � k�b

a

f �x� dx Any number k

�b

a

�f �x� dx � ��b

a

f �x� dx k � �1

4. Sum and Difference: �b

a

� f �x� � g�x�� dx � �b

a

f �x� dx � �b

a

g�x� dx

5. Additivity: �b

a

f �x� dx � �c

b

f �x� dx � �c

a

f �x� dx 

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on �a, b�, then

min f • �b � a� 	 �b

a

f �x� dx 	 max f • �b � a�.

7. Domination: f �x� � g�x� on �a, b� ⇒ �b

a

f �x� dx � �b

a

g�x� dx

f �x� � 0 on �a, b� ⇒ �b

a

f �x� dx � 0    g � 0
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EXAMPLE 1 Using the Rules for Definite Integrals

Suppose 

�1

�1

f �x� dx � 5, �4

1

f �x� dx � �2, and �1

�1

h�x� dx � 7.

Find each of the following integrals, if possible.

(a) �1

4

f �x� dx (b) � 4

�1

f �x� dx (c) �1

�1

�2 f �x� � 3h�x�� dx

(d) �1

0

f �x� dx (e) �2

�2

h�x� dx (f) � 4

�1

� f �x� � h�x�� dx

SOLUTION

(a) �1

4

f �x� dx � �� 4

1

f �x� dx � � ��2� � 2

(b)� 4

�1

f �x� dx � �1

�1

f �x� dx � � 4

1

f �x� dx � 5 � ��2� � 3

(c)�1

�1

�2 f �x� � 3h�x�� dx � 2�1

�1

f �x� dx � 3�1

�1

h�x� dx � 2�5� � 3�7� � 31

(d) Not enough information given. (We cannot assume, for example, that integrating
over half the interval would give half the integral!)

(e) Not enough information given. (We have no information about the function h
outside the interval ��1, 1�.)
(f) Not enough information given (same reason as in part (e)).        Now try Exercise 1.

EXAMPLE 2 Finding Bounds for an Integral

Show that the value of  �1
0 �1	 �	 c	o	s	x	 dx is less than 3�2.

SOLUTION

The Max-Min Inequality for definite integrals (Rule 6) says that  min f • �b � a� is a
lower bound for the value of  �b

a f �x� dx and that  max f • �b � a� is an upper bound.

The maximum value of  �1	 �	 c	o	s	x	 on �0, 1� is �2	, so

�1

0

�1	 �	 c	o	s	x	 dx 	 �2	 • �1 � 0� � �2	.

Since  �1
0 �1	 �	 c	o	s	x	 dx is bounded above by �2	 (which is 1.414...), it is less 

than 3�2.                                                                                    Now try Exercise 7.

Average Value of a Function
The average of n numbers is the sum of the numbers divided by n. How would we define
the average value of an arbitrary function f over a closed interval �a, b�? As there are in-
finitely many values to consider, adding them and then dividing by infinity is not an 
option.
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Consider, then, what happens if we take a large sample of n numbers from regular
subintervals of the interval �a, b�. One way would be to take some number ck from each of
the n subintervals of length 

�x � �
b �

n
a

� .

The average of the n sampled values is

� �
1
n

� • �
n

k�1

f �ck�

� �
b

�
�

x
a

� �
n

k�1

f �ck� �
1
n

� � �
b

�
�

x
a

�

� �
b �

1
a

� • �
n

k�1

f �ck��x.

Does this last sum look familiar? It is 1��b � a� times a Riemann sum for f on �a, b�.
That means that when we consider this averaging process as n→∞, we find it has a limit,
namely 1��b � a� times the integral of f over �a, b�. We are led by this remarkable fact to
the following definition.

f (c1) � f (c2) � … � f (cn )
���

n

EXAMPLE 3 Applying the Definition

Find the average value of f �x� � 4 � x2 on �0, 3�. Does f actually take on this value
at some point in the given interval?

SOLUTION

av� f � � �
b �

1
a

��b

a

f �x� dx

� �
3 �

1
0

��3

0

�4 � x2� dx

� �
3 �

1
0

� • 3 Using NINT

� 1

The average value of f �x� � 4 � x2 over the interval �0, 3� is 1. The function assumes 
this value when  4 � x2 � 1  or  x � ��3	. Since  x � �3	 lies in the interval �0, 3�,
the function does assume its average value in the given interval (Figure 5.24).

Now try Exercise 11.

Mean Value Theorem for Definite Integrals
It was no mere coincidence that the function in Example 3 took on its average value at some
point in the interval. Look at the graph in Figure 5.25 and imagine rectangles with base 
�b � a� and heights ranging from the minimum of f (a rectangle too small to give the integral)

√3  

y

x
0

–5

4

4 y � 4 � x2

Figure 5.24 The rectangle with base 
�0, 3� and with height equal to 1 (the aver-
age value of the function f �x� � 4 � x2)
has area equal to the net area between f
and the x-axis from 0 to 3. (Example 3)

y

x

y =  f (x)

a b0 c

f (c)

b – a

Figure 5.25 The value f �c� in the Mean
Value Theorem is, in a sense, the average
(or mean) height of f on �a, b�. When 
f � 0, the area of the shaded rectangle

f �c��b � a� � �b

a
f �x� dx,

is the area under the graph of f from a to b.

DEFINITION Average (Mean) Value

If f is integrable on �a, b�, its average (mean) value on �a, b� is 

av � f � � �
b �

1
a

��b

a

f �x� dx.
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288 Chapter 5 The Definite Integral

to the maximum of f (a rectangle too large). Somewhere in between there is a “just right” rec-
tangle, and its topside will intersect the graph of f if f is continuous. The statement that a con-
tinuous function on a closed interval always assumes its average value at least once in the
interval is known as the Mean Value Theorem for Definite Integrals. 

THEOREM 3 The Mean Value Theorem for Definite Integrals

If f is continuous on �a, b�, then at some point c in �a, b�,

f �c� � �
b �

1
a

��b

a

f �x� dx.

How Long is the Average Chord of a Circle?

Suppose we have a circle of radius r centered at the origin. We want to know the av-
erage length of the chords perpendicular to the diameter ��r, r� on the x-axis.

1. Show that the length of the chord at x is  2�r2	 �	 x	2	 (Figure 5.26).

2. Set up an integral expression for the average value of  2�r2	 �	 x	2	 over the 
interval ��r, r�.

3. Evaluate the integral by identifying its value as an area.

4. So, what is the average length of a chord of a circle of radius r?

5. Explain how we can use the Mean Value Theorem for Definite Integrals
(Theorem 3) to show that the function assumes the value in step 4.

EXPLORATION 1

Connecting Differential and Integral Calculus
Before we move on to the next section, let us pause for a moment of historical perspective
that can help you to appreciate the power of the theorem that you are about to encounter. In
Example 3 we used NINT to find the integral, and in Section 5.2, Example 2 we were for-
tunate that we could use our knowledge of the area of a circle. The area of a circle has been
around for a long time, but NINT has not; so how did people evaluate definite integrals
when they could not apply some known area formula? For example, in Exploration 1 of the
previous section we used the fact that

��

0

sin x dx � 2. 

Would Newton and Leibniz have known this fact? How?
They did know that quotients of infinitely small quantities, as they put it, could be used

to get velocity functions from position functions, and that sums of infinitely thin “rectan-
gle areas” could be used to get position functions from velocity functions. In some way,
then, there had to be a connection between these two seemingly different processes.
Newton and Leibniz were able to picture that connection, and it led them to the
Fundamental Theorem of Calculus. Can you picture it? Try Exploration 2. 

y

–r r
x

Figure 5.26 Chords perpendicular to the
diameter ��r, r� in a circle of radius r cen-
tered at the origin. (Exploration 1)
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If all went well in Exploration 2, you concluded that the derivative with respect to x of
the integral of f from a to x is simply f. Specifically,

Finding the Derivative of an Integral

Group Activity Suppose we are given the graph of a continuous function f, as in
Figure 5.27. 

1. Copy the graph of f onto your own paper. Choose any x greater than a in the
interval �a, b� and mark it on the x-axis.

2. Using only vertical line segments, shade in the region between the graph of f
and the x-axis from a to x. (Some shading might be below the x-axis.)

3. Your shaded region represents a definite integral. Explain why this integral can
be written as  �x

a f �t� dt.  (Why don’t we write it as �x
a f �x� dx?)

4. Compare your picture with others produced by your group. Notice how your
integral (a real number) depends on which x you chose in the interval �a, b�. The
integral is therefore a function of x on �a, b�. Call it F.

5. Recall that F��x� is the limit of  �F��x as �x gets smaller and smaller.
Represent �F in your picture by drawing one more vertical shading segment
to the right of the last one you drew in step 2. �F is the (signed) area of your
vertical segment.

6. Represent �x in your picture by moving x to beneath your newly-drawn seg-
ment. That small change in �x is the thickness of your vertical segment. 

7. What is now the height of your vertical segment?

8. Can you see why Newton and Leibniz concluded that F��x� � f �x�?

EXPLORATION 2

�
d
d
x
��x

a

f �t� dt � f �x�.

This means that the integral is an antiderivative of f, a fact we can exploit in the follow-
ing way.

If F is any antiderivative of f, then

�x

a

f �t� dt � F�x� � C

for some constant C. Setting x in this equation equal to a gives

�a

a

f �t� dt � F�a� � C

0 � F�a� � C

C � �F�a�.
Putting it all together, �x

a

f �t� dt � F�x� � F�a�.

x

y

0 a b

y �  f (x)

Figure 5.27 The graph of the function
in Exploration 2.
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290 Chapter 5 The Definite Integral

The implications of the previous last equation were enormous for the discoverers of cal-
culus. It meant that they could evaluate the definite integral of f from a to any number x sim-
ply by computing F�x� � F�a�, where F is any antiderivative of f.

EXAMPLE 4 Finding an Integral Using Antiderivatives

Find  ��

0 sin x dx using the formula  �x
a f �t� dt � F�x� � F�a�.

SOLUTION

Since sin x is the rate of change of the quantity F(x) = �cos x, that is, F'(x) = sin x

��

0

sin x dx � �cos ��� � ��cos �0��

� ���1� � ��1�

� 2.

This explains how we obtained the value for Exploration 1 of the previous section.
Now try Exercise 21.

Quick Review 5.3 (For help, go to Sections 3.6, 3.8, and 3.9.)

In Exercises 1–10, find dy�dx.

1. y � �cos x 2. y � sin x

3. y � ln �sec x� 4. y � ln �sin x�

5. y � ln �sec x � tan x� 6. y � x ln x � x

7. y � �
n
x

�

n�1

1
� �n � �1� 8. y � �

2x

1
� 1
�

9. y � xex 10. y � tan�1 x

Section 5.3 Exercises

The exercises in this section are designed to reinforce your under-
standing of the definite integral from the algebraic and geometric
points of view. For this reason, you should not use the numerical
integration capability of your calculator (NINT) except perhaps 
to support an answer.

1. Suppose that f and g are continuous functions and that 

�2

1

f �x� dx � �4, �5

1

f �x� dx � 6, �5

1

g�x� dx � 8. 

Use the rules in Table 5.3 to find each integral.

(a) �2

2

g�x� dx (b) �1

5

g�x� dx

(c) �2

1

3 f �x� dx (d) �5

2

f �x� dx

(e) �5

1

� f �x� � g�x�� dx (f) �5

1

�4 f �x� � g�x�� dx

2. Suppose that f and h are continuous functions and that 

�9

1

f �x� dx � �1, �9

7

f �x� dx � 5, �9

7

h�x� dx � 4.

Use the rules in Table 5.3 to find each integral.

(a) �9

1

�2 f �x� dx (b) �9

7

� f �x� � h�x�� dx

(c) �9

7

�2 f �x� � 3h�x�� dx (d) �1

9

f �x� dx

(e) �7

1

f �x� dx (f) �7

9

�h�x� � f �x�� dx

3. Suppose that  �2
1 f �x� dx � 5.  Find each integral.

(a) �2

1

f �u� du (b) �2

1

�3� f �z� dz �

(c) �1

2

f �t� dt (d) �2

1

��f �x�� dx

4. Suppose that  �0
�3 g�t� dt � �2�.  Find each integral.

(a) ��3

0

g�t� dt � (b) �0

�3

g�u� du

(c) �0

�3

��g�x�� dx (d) �0

�3

�
g

�
�r

2�
�

� dr
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5. Suppose that f is continuous and that 

�3

0

f �z� dz � 3 and � 4

0

f �z� dz � 7.

Find each integral.

(a) � 4

3

f �z� dz (b) �3

4

f �t� dt

6. Suppose that h is continuous and that 

�1

�1

h�r� dr � 0 and �3

�1

h�r� dr � 6.

Find each integral.

(a) �3

1

h�r� dr (b) ��1

3

h�u� du

7. Show that the value of  �1
0 sin �x2� dx cannot possibly be 2.

8. Show that the value of  �1
0 �x��� 8� dx lies between 

2�2� � 2.8 and  3.

9. Integrals of Nonnegative Functions Use the Max-Min
Inequality to show that if f is integrable then

f �x� � 0 on �a, b� ⇒ �b

a

f �x� dx � 0.

10. Integrals of Nonpositive Functions Show that if f is
integrable then

f �x� � 0 on �a, b� ⇒ �b

a

f �x� dx � 0.

In Exercises 11–14, use NINT to find the average value of the
function on the interval. At what point(s) in the interval does the
function assume its average value?

11. y � x2 � 1, �0, �3� � 12. y � � �
x
2

2
�, �0, 3�

13. y � �3x2 � 1, �0, 1� 14. y � �x � 1�2, �0, 3�

In Exercises 15–18, find the average value of the function on the
interval without integrating, by appealing to the geometry of the
region between the graph and the x-axis.

15.
x � 4, �4 � x � �1,

on ��4, 2�f �x� � {�x � 2, �1 � x � 2,

16. f �t� � 1 � �1� �� t�2�, ��1, 1�

⎯⎯⎯

t

s

0 1

1

–1

s � 1 � √ ⎯⎯1 � t2

x

y

0

2 y � –x � 2
y � x � 4

2–4

3

17. f �t� � sin t, �0, 2��

18. f �u� � tan u, 	� �
�

4
�, �

�

4
�


In Exercises 19–30, interpret the integrand as the rate of change of a
quantity and evaluate the integral using the antiderivative of the
quantity, as in Example 4.

19. �2p

p

sin x dx 20. �p/2

0

cos x dx

21. �1

0

ex dx 22. �p/4

0

sec2 x dx

23. �4

1

2x dx 24. �2

�1

3x2 dx

25. �6

�2

5 dx 26. �7

3

8 dx

27. �1

�1

�
1 �

1
x2� dx 28. �1�2

0

dx

29. �e

1

�
1
x

� dx 30. �4

1

�x�2 dx

In Exercises 31–36, find the average value of the function on the
interval, using antiderivatives to compute the integral.

31. y � sin x, [0, p] 32. y � �
1
x

�, [e, 2e]

33. y � sec2 x, 	0, �
p

4
�
 34. y � �

1 �

1
x2�, [0 , 1]

35. y � 3x2 � 2x, [�1, 2] 36. y � sec x tan x, 	0, �
p

3
�


37. Group Activity Use the Max-Min Inequality to find upper
and lower bounds for the value of

�1

0

�
1 �

1
x4� dx.

38. Group Activity (Continuation of Exercise 37) Use the Max-
Min Inequality to find upper and lower bounds for the values of

�0.5

0

�
1 �

1
x4� dx and �1

0.5

�
1 �

1
x4� dx.

Add these to arrive at an improved estimate for

�1

0

�
1 �

1
x4� dx.

39. Writing to Learn If av � f � really is a typical value of the
integrable function f �x� on �a, b�, then the number av� f � should
have the same integral over �a, b� that f does. Does it? That is,
does

�b

a

av � f � dx � �b

a

f �x� dx?

Give reasons for your answer.

1
�
�1 � x2�
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292 Chapter 5 The Definite Integral

40. Writing to Learn A driver averaged 30 mph on a 150-mile trip
and then returned over the same 150 miles at the rate of 50 mph.
He figured that his average speed was 40 mph for the entire trip.

(a) What was his total distance traveled?

(b) What was his total time spent for the trip?

(c) What was his average speed for the trip?

(d) Explain the error in the driver’s reasoning.

41. Writing to Learn A dam released 1000 m3 of water at 
10 m3�min and then released another 1000 m3 at 20 m3�min.
What was the average rate at which the water was released?
Give reasons for your answer.

42. Use the inequality  sin x 	 x, which holds for  x � 0, to find an
upper bound for the value of �1

0 sin x dx.

43. The inequality  sec x � 1 � �x2�2� holds on ����2, ��2�. Use
it to find a lower bound for the value of  �1

0 sec x dx.

44. Show that the average value of a linear function L(x) on [a, b] is 

�
L(a) �

2
L(b)

�.

[Caution: This simple formula for average value does not work
for functions in general!]

Standardized Test Questions
You may use a graphing calculator to solve the following
problems.

45. True or False The average value of a function f on [a, b]
always lies between f (a) and f (b). Justify your answer.

46. True or False If �b
a f �x� dx � 0, then f (a) � f (b). Justify

your answer.

47. Multiple Choice If �7
3 f �x� dx � 5 and �7

3 g�x� dx � 3, then
all of the following must be true except

(A) �7

3 

f (x)g(x)dx � 15

(B) �7

3 

[ f (x) � g(x)]dx � 8

(C) �7

3

2 f (x) dx � 10

(D) �7

3

[ f (x) � g(x)]dx � 2

(E) �3

7

[ g(x) � f (x)]dx � 2

48. Multiple Choice If �5
2 f �x� dx � 12 and �8

5  f �x� dx � 4,
then all of the following must be true except

(A) �8

2

f �x� dx � 16

(B) �5

2

f �x� dx ��8

5

3 f �x� dx � 0

(C) �2

5

f �x� dx � �12

(D) ��8

�5

f �x� dx � �4

(E) �6

2

f �x� dx � �8

6

f �x� dx � 16

49. Multiple Choice What is the average value of the cosine
function on the interval [1, 5]?

(A) �0.990 (B) �0.450 (C) �0.128

(D) 0.412 (E) 0.998

50. Multiple Choice If the average value of the function f on the
interval [a, b] is 10, then �b

a f �x� dx �

(A) �
b

1
�

0
a

� (B) �
f (a)

1
�

0
f (b)

� (C) 10b – 10a

(D) �
b

1
�

0
a

� (E) �
f (b)

2
�

0
f (a)

�

Exploration
51. Comparing Area Formulas Consider the region in the first

quadrant under the curve  y � �h�b� x from  x � 0  to x � b
(see figure).

(a) Use a geometry formula to calculate the area of the region.

(b) Find all antiderivatives of y.

(c) Use an antiderivative of y to evaluate �b
0 y�x� dx.

x

y

h

y �    xh–
b

b0
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Quick Quiz for AP* Preparation: Sections 5.1–5.3

You should solve the following problems without using a 
calculator. 

1. Multiple Choice If �b
a f �x� dx � a � 2b, then 

�b
a � f �x� �3� dx �

(A) a � 2b � 3 (B) 3b – 3a

(C) 4a – b (D) 5b – 2a

(E) 5b – 3a

2. Multiple Choice The expression 

�
2
1
0
����

2
1
0
�� � ��

2
2
0
�� � ��

2
3
0
�� � ... � ��

2
2
0
0
���

is a Riemann sum approximation for

(A) �1

0
��

2
x
0
�� dx (B) �1

0

�x	 dx

(C) �
2
1
0
� �1

0
��

2
x
0
�� dx (D) �

2
1
0
� �1

0

�x	 dx

(E) �
2
1
0
� �20

0

�x	 dx

3. Multiple Choice What are all values of k for which 
�k

2  x
2 dx � 0?

(A) �2 (B) 0 (C) 2

(D) �2 and 2 (E) �2, 0, and 2

4. Free Response Let f be a function such that f ��(x) � 6x � 12.

(a) Find f (x) if the graph of f is tangent to the line 4x � y � 5 
at the point (0, �5). 

(b) Find the average value of f (x) on the closed interval 
[�1, 1].

Extending the Ideas
52. Graphing Calculator Challenge If  k � 1, and if the

average value of xk on 
0, k� is k, what is k? Check your result
with a CAS if you have one available.

53. Show that if F��x� � G��x� on 
a, b�, then 

F�b� � F�a� � G�b� � G�a�.
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294 Chapter 5 The Definite Integral

Fundamental Theorem of Calculus

Fundamental Theorem, Part 1
This section presents the discovery by Newton and Leibniz of the astonishing connection
between integration and differentiation. This connection started the mathematical develop-
ment that fueled the scientific revolution for the next 200 years, and is still regarded as the
most important computational discovery in the history of mathematics: The Fundamental
Theorem of Calculus. 

The Fundamental Theorem comes in two parts, both of which were previewed in
Exploration 2 of the previous section. The first part says that the definite integral of a con-
tinuous function is a differentiable function of its upper limit of integration. Moreover, it
tells us what that derivative is. The second part says that the definite integral of a continu-
ous function from a to b can be found from any one of the function’s antiderivatives F as the
number F�b� � F�a�.

5.4
What you’ll learn about

• Fundamental Theorem, Part 1

• Graphing the Function �a
xf�t� dt

• Fundamental Theorem, Part 2

• Area Connection

• Analyzing Antiderivatives 
Graphically

. . . and why

The Fundamental Theorem of 
Calculus is a triumph of mathe-
matical discovery and the key to
solving many problems.

THEOREM 4 The Fundamental Theorem of Calculus, Part 1

If f is continuous on �a, b�, then the function 

F�x� � �x

a

f �t� dt

has a derivative at every point x in �a, b�, and

�
d
d
F
x
� � �

d
d
x
��x

a

f �t� dt � f �x�.

Proof The geometric exploration at the end of the previous section contained the idea of
the proof, but it glossed over the necessary limit arguments. Here we will be more precise.

Apply the definition of the derivative directly to the function F. That is,

�
d
d
F
x
� � lim

h→0
�
F�x � h

h
� � F�x�
�

� lim
h→0

� lim
h→0

� lim
h→0 [ �

1
h

��x�h

x
f �t� dt] .

The expression in brackets in the last line is the average value of f from x to x � h. We
know from the Mean Value Theorem for Definite Integrals (Theorem 3, Section 5.3) that
f, being continuous, takes on its average value at least once in the interval; that is,

�
1
h

� �x�h

x

f �t� dt � f �c� for some c between x and x � h.

Rules for integrals,
Section 5.3

�x�h

x
f �t� dt

��
h

�x�h

a
f �t� dt ��x

a
f �t� dt

���
h

Sir Isaac Newton 
(1642–1727)

Sir Isaac Newton is 
considered to be one 
of the most influential
mathematicians of all
time. Moreover, by the
age of 25, he had also
made revolutionary ad-
vances in optics,

physics, and astronomy.
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We can therefore continue our proof, letting  �1�h��x�h
x f �t� dt � f �c�,

�
d
d
F
x
� � lim

h→0
�
1
h

� �x�h

x

f �t� dt

� lim
h→0

f �c�, where c lies between x and x � h.

What happens to c as h goes to zero? As x � h gets closer to x, it carries c along with it like
a bead on a wire, forcing c to approach x. Since f is continuous, this means that f �c�
approaches f �x�:

lim
h→0

f �c� � f �x�. 

Putting it all together,

�
d
d
F
x
� � lim

h→0
�
F�x � h

h
� � F�x�
� Definition of derivatives

� lim
h→0

Rules for integrals

� lim
h→0

f �c� for some c between x and x � h.

� f �x�. Because f is continuous

This concludes the proof. ■

It is difficult to overestimate the power of the equation

�x�h

x
f �t� dt

��
h

�
d
d
x
��x

a

f �t� dt � f �x�. (1)

It says that every continuous function f is the derivative of some other function, namely
�a

x
f � t� dt. It says that every continuous function has an antiderivative. And it says that

the processes of integration and differentiation are inverses of one another. If any equa-
tion deserves to be called the Fundamental Theorem of Calculus, this equation is surely
the one.

EXAMPLE 1 Applying the Fundamental Theorem

Find

�
d
d
x
��x

��

cos t dt and �
d
d
x
��x

0

�
1 �

1
t2� dt

by using the Fundamental Theorem.

SOLUTION

�
d
d
x
��x

��

cos t dt � cos x Eq. 1 with f �t� � cos t

�
d
d
x
��x

0

�
1 �

1
t2� dt � �

1 �

1
x2� . Eq. 1 with f �t� � �

1 �

1
t2�   

Now try Exercise 3.
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296 Chapter 5 The Definite Integral

EXAMPLE 2 The Fundamental Theorem with the Chain Rule

Find  dy�dx if  y � �x2

1 cos t dt.

SOLUTION

The upper limit of integration is not x but x2. This makes y a composite of

y � �u

1

cos t dt and u � x2.

We must therefore apply the Chain Rule when finding dy�dx.

�
d
dy

x
� � �

d
d

u
y
� • �

d
d

u
x
�

� (�
d
d
u
��u

1

cos t dt ) • �
d
d

u
x
�

� cos u • �
d
d

u
x
�

� cos �x2� • 2x

� 2x cos x2 Now try Exercise 9.

EXAMPLE 3 Variable Lower Limits of Integration

Find  dy�dx.

(a) y � �5

x

3t sin t dt (b) y � �x2

2x

�
2 �

1
et� dt

SOLUTION

The rules for integrals set these up for the Fundamental Theorem.

(a) �
d
d
x
��5

x

3t sin t dt � �
d
d
x
� (��x

5

3t sin t dt )
� � �

d
d
x
��x

5

3t sin t dt

� �3x sin x

(b) �
d
d
x
��x2

2x

�
2 �

1
et� dt � �

d
d
x
� (�x 2

0

�
2 �

1
et� dt � �2x

0

�
2 �

1
et� dt )

� �
2 �

1
ex2� �

d
d
x
� �x2� � �

2 �

1
e2x� �

d
d
x
��2x� Chain Rule

� �
2 �

1
ex2� • 2x � �

2 �

1
e2x� • 2

� �
2 �

2x
ex2� � �

2 �

2
e2x�

Now try Exercise 19.
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Section 5.4 Fundamental Theorem of Calculus 297

EXAMPLE 4 Constructing a Function with a Given 
Derivative and Value

Find a function  y � f �x� with derivative

�
d
dy

x
� � tan x

that satisfies the condition  f �3� � 5.

SOLUTION

The Fundamental Theorem makes it easy to construct a function with derivative tan x:

y � �x

3

tan t dt.

Since  y�3� � 0, we have only to add 5 to this function to construct one with derivative
tan x whose value at  x � 3  is 5:

f �x� � �x

3

tan t dt � 5.                 Now try Exercise 25.

Although the solution to the problem in Example 4 satisfies the two required conditions,
you might question whether it is in a useful form. Not many years ago, this form might
have posed a computation problem. Indeed, for such problems much effort has been
expended over the centuries trying to find solutions that do not involve integrals. We will
see some in Chapter 6, where we will learn (for example) how to write the solution in
Example 4 as

y � ln ��cc
o
o
s
s

3
x

� � � 5.

However, now that computers and calculators are capable of evaluating integrals, the form
given in Example 4 is not only useful, but in some ways preferable. It is certainly easier to
find and is always available.

Graphing the Function �a

x f�t� dt
Consider for a moment the two forms of the function we have just been discussing,

F�x� � �x

3

tan t dt � 5 and F �x� � ln ��cc
o
o
s
s

3
x

� � � 5.

With which expression is it easier to evaluate, say, F�4�? From the time of Newton almost
to the present, there has been no contest: the expression on the right. At least it provides
something to compute, and there have always been tables or slide rules or calculators to
facilitate that computation. The expression on the left involved at best a tedious summing
process and almost certainly an increased opportunity for error. 

Today we can find F�4� from either expression on the same machine. The choice is
between NINT �tan x, x, 3, 4� � 5 and ln �abs�cos�3��cos�4��� � 5. Both calculations give
5.415135083 in approximately the same amount of time.

We can even use NINT to graph the function. This modest technology feat would have
absolutely dazzled the mathematicians of the 18th and 19th centuries, who knew how the
solutions of differential equations, such as dy�dx � tan x, could be written as integrals, but
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298 Chapter 5 The Definite Integral

for whom integrals were of no practical use computationally unless they could be written
in exact form. Since so few integrals could, in fact, be written in exact form, NINT would
have spared generations of scientists much frustration.

Nevertheless, one must not proceed blindly into the world of calculator computation.
Exploration 1 will demonstrate the need for caution.

Graphing NINT f

Some graphers can graph the numerical
integral y � NINT (f(x), x, a, x) directly
as a function of x. Others will require a
toolbox program such as the one called
NINTGRAF provided in the Technology
Resource Manual.

Graphing NINT f

Let us use NINT to attempt to graph the function we just discussed,

F�x� � �x

3

tan t dt � 5.

1. Graph the function  y � F�x� in the window ��10, 10� by ��10, 10�. You will
probably wait a long time and see no graph. Break out of the graphing program
if necessary.

2. Recall that the graph of the function  y � tan x has vertical asymptotes. Where
do they occur on the interval ��10, 10�?

3. When attempting to graph the function  F�x� � �x
3 tan t dt � 5 on the interval

��10, 10�, your grapher begins by trying to find F��10�. Explain why this
might cause a problem for your calculator.

4. Set your viewing window so that your calculator graphs only over the 
domain of the continuous branch of the tangent function that contains the 
point (3, tan 3).

5. What is the domain in step 4? Is it an open interval or a closed interval?

6. What is the domain of F�x�? Is it an open interval or a closed interval?

7. Your calculator graphs over the closed interval �xmin, xmax �. Find a viewing
window that will give you a good look at the graph of F and produce the graph
on your calculator.

8. Describe the graph of F.

EXPLORATION 1

You have probably noticed that your grapher moves slowly when graphing NINT. This
is because it must compute each value as a limit of sums—comparatively slow work even
for a microprocessor. Here are some ways to speed up the process:

1. Change the tolerance on your grapher. The smaller the tolerance, the more accurate
the calculator will try to be when finding the limiting value of each sum (and the
longer it will take to do so). The default value is usually quite small �like 0.00001�,
but a value as large as 1 can be used for graphing in a typical viewing window.

2. Change the x-resolution. The default resolution is 1, which means that the grapher
will compute a function value for every vertical column of pixels. At resolution 2 it
computes only every second value, and so on. With higher resolutions, some graph
smoothness is sacrificed for speed. 

3. Switch to parametric mode. To graph  y � NINT � f �x�, x, a, x� in parametric mode,
let  x�t� � t  and let  y�t� � NINT � f �t�, t, a, t�.  You can then control the speed of
the grapher by changing the t-step. (Choosing a bigger t-step has the same effect as
choosing a larger x-resolution.)
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Section 5.4 Fundamental Theorem of Calculus 299

Fundamental Theorem, Part 2
The second part of the Fundamental Theorem of Calculus shows how to evaluate definite
integrals directly from antiderivatives.

The Effect of Changing a in �x
a f �t �dt

The first part of the Fundamental Theorem of Calculus asserts that the derivative of
�x

a f �t� dt is f �x�, regardless of the value of a.

1. Graph NDER �NINT �x2, x, 0, x��.
2. Graph NDER �NINT �x2, x, 5, x��.
3. Without graphing, tell what the x - intercept of NINT �x2, x, 0, x� is. Explain.

4. Without graphing, tell what the x-intercept of NINT �x2, x, 5, x� is. Explain.

5. How does changing a affect the graph of  y � �d�dx��x
a f �t� dt?

6. How does changing a affect the graph of  y � �x
a f �t� dt?

EXPLORATION 2

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of f exists,
namely

G�x� � �x

a

f �t� dt.

Thus, if F is any antiderivative of f, then F�x� � G�x� � C for some constant C (by
Corollary 3 of the Mean Value Theorem for Derivatives, Section 4.2).

Evaluating F�b� � F�a�, we have

F�b� � F�a� � [G�b� � C ] � [G�a� � C ]

� G�b� � G�a�

� �b

a

f �t� dt � �a

a

f �t� dt

� �b

a

f �t� dt � 0

� �b

a

f �t� dt.
■

THEOREM 4 (continued) The Fundamental Theorem of
Calculus, Part 2

If f is continuous at every point of �a, b�, and if F is any antiderivative of f on 
�a, b�, then

�b

a

f �x� dx � F�b� � F�a�.

This part of the Fundamental Theorem is also called the Integral Evaluation 
Theorem.
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300 Chapter 5 The Definite Integral

At the risk of repeating ourselves: It is difficult to overestimate the power of the simple
equation

�b

a

f �x� dx � F�b� � F�a�.

It says that any definite integral of any continuous function f can be calculated without tak-
ing limits, without calculating Riemann sums, and often without effort—so long as an anti-
derivative of f can be found. If you can imagine what it was like before this theorem (and
before computing machines), when approximations by tedious sums were the only alter-
native for solving many real-world problems, then you can imagine what a miracle calcu-
lus was thought to be. If any equation deserves to be called the Fundamental Theorem of
Calculus, this equation is surely the (second) one. 

EXAMPLE 5 Evaluating an Integral

Evaluate  �3
�1 �x3 � 1� dx using an antiderivative.

SOLUTION

Solve Analytically A simple antiderivative of  x3 � 1  is  �x4�4� � x.  Therefore,

�3

�1
(x3 � 1) dx � [ �

x
4

4

� � x] 3

�1

� (�
8
4
1
� � 3) � ( �

1
4

� � 1)
� 24.

Support Numerically NINT �x3 � 1, x, �1, 3� � 24.           Now try Exercise 29.

Area Connection
In Section 5.2 we saw that the definite integral could be interpreted as the net area between the
graph of a function and the x-axis. We can therefore compute areas using antiderivatives, but
we must again be careful to distinguish net area (in which area below the x-axis is counted as
negative) from total area. The unmodified word “area” will be taken to mean total area. 

EXAMPLE 6 Finding Area Using Antiderivatives

Find the area of the region between the curve  y � 4 � x2, 0 	 x 	 3, and the x-axis.

SOLUTION

The curve crosses the x-axis at  x � 2, partitioning the interval �0, 3� into two subin-
tervals, on each of which f �x� � 4 � x2 will not change sign.

We can see from the graph (Figure 5.28) that f �x� � 0  on �0, 2� and f �x� 
 0  on �2, 3�.

Over �0, 2�: �2

0

�4 � x2� dx � [4x � �
x
3

3

� ]2

0

� �
1
3
6
� .

Over �2, 3�: �3

2

�4 � x2� dx � [4x � �
x
3

3

� ] 3

2

� � �
7
3

� .

The area of the region is  � �
1
3
6
� � � �� �

7
3

� � � �
2
3
3
� .                          Now try Exercise 41.

Integral Evaluation Notation

The usual notation for F�b� � F�a� is 

F�x�]b

a
or [F�x�]b

a
,

depending on whether F has one or
more terms. This notation provides a
compact “recipe” for the evaluation, al-
lowing us to show the antiderivative in
an intermediate step.

x

y

0

–5

1

y � 4 � x2
4

2 3 4

Figure 5.28 The function f �x� � 4 � x2

changes sign only at x � 2 on the interval
�0, 3�. (Example 6)
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We can find area numerically by using NINT to integrate the absolute value of the func-
tion over the given interval. There is no need to partition. By taking absolute values, we
automatically reflect the negative portions of the graph across the x-axis to count all area
as positive (Figure 5.29).

EXAMPLE 7 Finding Area Using NINT

Find the area of the region between the curve  y � x cos 2x and the x-axis over the
interval  �3 	 x 	 3  (Figure 5.29).

SOLUTION

Rounded to two decimal places, we have

NINT � �x cos 2x �, x, �3, 3� � 5.43.      Now try Exercise 51.

How to Find Total Area Analytically

To find the area between the graph of y � f �x� and the x-axis over the interval 
�a, b� analytically,

1. partition �a, b� with the zeros of f,

2. integrate f over each subinterval,

3. add the absolute values of the integrals.

How to Find Total Area Numerically

To find the area between the graph of  y � f �x� and the x-axis over the interval 
�a, b� numerically, evaluate 

NINT �� f �x��, x, a, b�.

Analyzing Antiderivatives Graphically
A good way to put several calculus concepts together at this point is to start with the graph
of a function f and consider a new function h defined as a definite integral of f. If 
h(x) ��

x

a f �t� dt, for example, the Fundamental Theorem guarantees that h�(x) � f (x), so
the graph of f is also the graph of h�. We can therefore make conclusions about the behavior
of h by considering the graphical behavior of its derivative f, just as we did in Section 4.3.

EXAMPLE 8 Using the Graph of f to Analyze h(x) � �x
a f(t) dt

The graph of a continuous function f with domain [0, 8] is shown in Figure 5.30. 
Let h be the function defined by h(x) � �

x

1  f �t� dt.

(a) Find h(1).

(b) Is h(0) positive or negative? Justify your answer.

(c) Find the value of x for which h(x) is a maximum.

(d) Find the value of x for which h(x) is a minimum. 

(e) Find the x-coordinates of all points of inflections of the graph of y � h(x).
continued

[–3, 3] by [–3, 3]

(a)

[–3, 3] by [–3, 3]

(b)

Figure 5.29 The graphs of (a) 
y � x cos 2x and (b) y � �x cos 2x � over
��3, 3�. The shaded regions have the 
same area.

Figure 5.30 The graph of f in Example 8,
in which questions are asked about the func-
tion h(x) � �

x

1 f �t� dt.

x

y

3 60
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302 Chapter 5 The Definite Integral

SOLUTION

First, we note that h�(x) � f (x), so the graph of  f is also the graph of the derivative of h.
Also, h is continuous because it is differentiable. 

(a) h(1) � �
1

1 f �t� dt � 0.

(b) h(0) � �
0

1  f �t� dt 
 0, because we are integrating from right to left under a positive
function.

(c) The derivative of h is positive on (0,1), positive on (1, 4), and negative on (4, 8), so
the continuous function h is increasing on [0, 4] and decreasing on [4, 8]. Thus f (4)
is a maximum.

(d) The sign analysis of the derivative above shows that the minimum value occurs at an
endpoint of the interval [0, 8]. We see by comparing areas that h(0) � �

0
1 f �t� dt � �0.5,

while h(8) = �
8

1  f �t� dt is a negative number considerably less than �1. Thus f (8) is a
minimum.

(e) The points of inflection occur where h� � f changes direction, that is, at x � 1,
x � 3, and x � 6.                                                                         Now try Exercise 57.

Quick Review 5.4 (For help, go to Sections 3.6, 3.7, and 3.9.)

In Exercises 1–10, find dy�dx.

1. y � sin �x2� 2. y � �sin x�2

3. y � sec2 x � tan2 x 4. y � ln �3x� � ln �7x�
5. y � 2x 6. y � �x	

7. y � �
co

x
s x
� 8. y � sin t and x � cos t

9. xy � x � y2 10. dx�dy � 3x

Section 5.4 Exercises

In Exercises 1–20, find dy/dx.

1. y � �x

0

(sin2 t) dt 2. y � �x

2

(3t + cos t2) dt

3. y � �x

0

(t3 � t)5 dt 4. y � �x

�2

�1 � e5	t	 dt

5. y � �x

2

(tan3 u)du 6. y � �x

4

eu sec u du

7. y � �x

7

�
1
1
�

�

t
t
2� dt 8. y � �x

�p

�
3
2

�

�

c
s
o
in
s

t
t

� dt

9. y � �x2

0

et2 dt 10. y � �x2

6

cot 3t dt

11. y � �5x

2

�
�1

u
� u2	
� du 12. y � �p�x

p

du

13. y � �6

x

ln (1 � t2) dt 14. y � �7

x

�2t4 � t	 � 1	 dt

1 � sin2 u
��
1 � cos2 u

15. y � �5

x3
�
t2
co

�

s t
2

� dt 16. y � �25

5x2
�
t2 �

t3 �

2t �

6
9

� dt

17. y � �0

�x	
sin(r2) dr 18. y � �10

3x2
ln (2 � p2) dp

19. �x3

x2
cos(2t) dt 20. y � �cos x

sin x

t2 dt

In Exercises 21–26, construct a function of the form 
y � �

x

a f �t� dt � C that satisfies the given conditions.

21. �
d
d
y
x
� � sin3 x, and y � 0 when x � 5.

22. �
d
d
y
x
� � ex tan x, and y � 0 when x � 8.

23. �
d
d
y
x
� � ln(sin x � 5), and y � 3 when x � 2.

24. �
d
d
y
x
� � �3 � co	s x	, and y � 4 when x � �3.
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25. �
d
d
y
x
� � cos2 5x, and y � �2  when x � 7.

26. �
d
d
y
x
� � e�x	, and y � 1 when x � 0. t

In Exercises 27–40, evaluate each integral using Part 2 of the
Fundamental Theorem. Support your answer with NINT if you 
are unsure. 

27. �3

1�2
(2 � �

1
x

� ) dx 28. ��1

2

3x dx

29. �1

0

�x2 � �x	� dx 30. �5

0

x3�2 dx

31. �32

1

x�6�5 dx 32. ��1

�2

�
x
2
2� dx

33. ��

0

sin x dx 34. ��

0

�1 � cos x� dx

35. ���3

0

2 sec2 u du 36. �5��6

��6
csc2u du

37. �3��4

��4
csc x cot x dx 38. ���3

0

4 sec x tan x dx

39. �1

�1

�r � 1�2 dr 40. � 4

0

�
1 �

�

�

u	

u	
� du

In Exercises 41–44, find the total area of the region between the
curve and the x-axis.

41. y � 2 � x, 0 	 x 	 3

42. y � 3x2 � 3, �2 	 x 	 2

43. y � x3 � 3x2 � 2x, 0 	 x 	 2

44. y � x3 � 4x, �2 	 x 	 2

In Exercises 45–48, find the area of the shaded region.

45.

46.

x

y

0 2

1

1

y � x2

4

(1, 1)

⎯y � √⎯x

y

x
0

y� 2 – x

1
(1, 1)

1 2

y�x2

47.

48.

In Exercises 49–54, use NINT to solve the problem.

49. Evaluate �10

0

�
3 � 2

1
sin x
� dx.

50. Evaluate �0.8

�0.8

�
2
x
x
4

4

�

�

1
1

� dx.

51. Find the area of the semielliptical region between the 
x-axis and the graph of  y � �8	 �	 2	x	2	.

52. Find the average value of �cos x	 on the interval ��1, 1�.

53. For what value of x does  �
x

0 e�t 2
dt � 0.6?

54. Find the area of the region in the first quadrant enclosed by the
coordinate axes and the graph of  x3 � y3 � 1.

In Exercises 55 and 56, find K so that

�x

a

f �t� dt � K ��x

b

f �t� dt.

55. f �x� � x2 � 3x � 1; a � �1; b � 2

56. f �x� � sin2 x; a � 0; b � 2

57. Let  

H�x� � �x

0

f �t� dt,

where f is the continuous function with domain �0, 12� graphed
here.

(a) Find H�0�.

(b) On what interval is H increasing? Explain.

(c) On what interval is the graph of H concave up? Explain.

(d) Is H�12� positive or negative? Explain.

(e) Where does H achieve its maximum value? Explain.

(f) Where does H achieve its minimum value? Explain.

6 8 102 4 12

8

y

x

6
4
2

y = f (x)

�–
6

x

y

y =  sin x  1

5�—–
6

x

y

0

x ��

�

2
y � 2

y �1
 cos x
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304 Chapter 5 The Definite Integral

In Exercises 58 and 59, f is the differentiable function whose graph
is shown in the given figure. The position at time t �sec� of a particle
moving along a coordinate axis is 

s � � t

0

f �x� dx

meters. Use the graph to answer the questions. Give reasons for your
answers.

58.

(a) What is the particle’s velocity at time  t � 5?

(b) Is the acceleration of the particle at time  t � 5  positive 
or negative?

(c) What is the particle’s position at time  t � 3?

(d) At what time during the first 9 sec does s have its largest
value?

(e) Approximately when is the acceleration zero?

(f) When is the particle moving toward the origin? away from
the origin?

(g) On which side of the origin does the particle lie at time t � 9?

59.

(a) What is the particle’s velocity at time  t � 3?

(b) Is the acceleration of the particle at time  t � 3  positive 
or negative?

(c) What is the particle’s position at time  t � 3?

(d) When does the particle pass through the origin?

(e) Approximately when is the acceleration zero?

(f) When is the particle moving toward the origin? away from
the origin?

(g) On which side of the origin does the particle lie at time 
t � 9?

60. Suppose  �
x

1 f �t� dt � x2 � 2x � 1.  Find f �x�.

x

y

0 3

2

–2

y � f (x)

(6, 6)
(7, 6.5)

6 9

–4

–6

4

6

8

x

y

0 1
–1

y � f (x)

–2

1

2

3

4

2 3 4 5 6 7 8 9

(1, 1)

(2, 2)

(3, 3)

(5, 2)

61. Linearization Find the linearization of 

f �x� � 2 � �x

0

�
1

1
�

0
t

� dt at x � 0.

62. Find f �4� if  �
x

0 f �t� dt � x cos �x.

63. Finding Area Show that if k is a positive constant, then the area
between the x-axis and one arch of the curve  y � sin kx is
always  2�k.

64. Archimedes’ Area Formula for Parabolas Archimedes
(287–212 B.C.), inventor, military engineer, physicist, and the
greatest mathematician of classical times, discovered that the area
under a parabolic arch like the one shown here is always two-
thirds the base times the height.

(a) Find the area under the parabolic arch 

y � 6 � x � x2, �3 	 x 	 2.

(b) Find the height of the arch.

(c) Show that the area is two-thirds the base times the height.

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

65. True or False If f is continuous on an open interval I
containing a, then F defined by F(x) � �

x

a f (t) dt is continuous
on I. Justify your answer.  

66. True or False If b � a, then �
d
d
x
� �

b

a ex2
dx is positive. Justify

your answer.

67. Multiple Choice Let f (x) � �
x

a ln(2 � sin t)dt. If f (3) � 4,
then f (5) �

(A) 0.040 (B) 0.272 (C) 0.961 (D) 4.555 (E) 6.667

68. Multiple Choice What is lim
h→0

�
1
h

� �
x�h

x f (t) dt?

(A) 0 (B) 1 (C) f �(x) (D) f (x) (E) nonexistent

69. Multiple Choice At x � p, the linearization of 
f (x) � �

x

p
cos3t dt is

(A) y � �1 (B) y � �x (C) y � p

(D) y � x � p (E) y � p � x

70. Multiple Choice The area of the region enclosed between the
graph of y � �1 � x4	 and the x-axis is

(A) 0.886 (B) 1.253 (C) 1.414

(D) 1.571 (E) 1.748

Height  

Base
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Section 5.4 Fundamental Theorem of Calculus 305

Explorations
71. The Sine Integral Function The sine integral function

Si�x� � �x

0

�
sin

t
t

� dt

is one of the many useful functions in engineering that are
defined as integrals. Although the notation does not show it, the
function being integrated is

�
sin

t
t

� , t � 0
f �t� � {1, t � 0,

the continuous extension of  �sin t��t to the origin.

(a) Show that  Si�x� is an odd function of x.

(b) What is the value of  Si�0�?
(c) Find the values of x at which  Si�x� has a local extreme
value.

(d) Use NINT to graph  Si�x�.

72. Cost from Marginal Cost The marginal cost of printing a
poster when x posters have been printed is

�
d
dc

x
� � �

2�

1

x	
�

dollars. Find 

(a) c�100� � c�1�, the cost of printing posters 2 to 100.

(b) c�400� � c�100�, the cost of printing posters 101 to 400.

73. Revenue from Marginal Revenue Suppose that a
company’s marginal revenue from the manufacture and sale 
of eggbeaters is 

�
d
d

x
r
� � 2 � �

�x �

2
1�2� ,

where r is measured in thousands of dollars and x in thousands 
of units. How much money should the company expect from a
production run of x � 3 thousand eggbeaters? To find out,
integrate the marginal revenue from  x � 0  to  x � 3.

74. Average Daily Holding Cost Solon Container receives 450
drums of plastic pellets every 30 days. The inventory function
(drums on hand as a function of days) is I �x� � 450 � x2�2. 

(a) Find the average daily inventory (that is, the average value of
I �x� for the 30-day period).

(b) If the holding cost for one drum is $0.02 per day, find the
average daily holding cost (that is, the per-drum holding cost
times the average daily inventory).

75. Suppose that f has a negative derivative for all values of x and
that  f �1� � 0.  Which of the following statements must be true
of the function

h�x� � �x

0

f �t� dt?

Give reasons for your answers.

(a) h is a twice-differentiable function of x.

(b) h and dh�dx are both continuous.

(c) The graph of h has a horizontal tangent at  x � 1.

(d) h has a local maximum at  x � 1.

(e) h has a local minimum at  x � 1.

(f) The graph of h has an inflection point at  x � 1.

(g) The graph of dh�dx crosses the x-axis at  x � 1.

Extending the Ideas
76. Writing to Learn If f is an odd continuous function, give a

graphical argument to explain why  �
x

0 f �t� dt is even.

77. Writing to Learn If f is an even continuous function, give a
graphical argument to explain why  �

x

0 f �t� dt is odd.

78. Writing to Learn Explain why we can conclude from
Exercises 76 and 77 that every even continuous function is 
the derivative of an odd continuous function and vice versa. 

79. Give a convincing argument that the equation 

�x

0

�
sin

t
t

� dt � 1

has exactly one solution. Give its approximate value.
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Trapezoidal Rule

Trapezoidal Approximations
You probably noticed in Section 5.1 that MRAM was generally more efficient in approxi-
mating integrals than either LRAM or RRAM, even though all three RAM approximations
approached the same limit. All three RAM approximations, however, depend on the areas
of rectangles. Are there other geometric shapes with known areas that can do the job more
efficiently? The answer is yes, and the most obvious one is the trapezoid.

As shown in Figure 5.31, if �a, b� is partitioned into n subintervals of equal length 
h � �b � a��n, the graph of f on �a, b� can be approximated by a straight line segment over
each subinterval.

5.5
What you’ll learn about 

• Trapezoidal Approximations

• Other Algorithms

• Error Analysis

. . . and why

Some definite integrals are best
found by numerical approxima-
tions, and rectangles are not 
always the most efficient figures
to use.

h

x

y

0

x0 � a

xn � b

x1 x2

y � f(x)

xn – 1

P2(x2, y2)

P1(x1, y1)

P0(x0, y0)

Pn(xn, yn)

Pn–1(xn–1, yn–1)

Figure 5.31 The trapezoidal rule approximates short stretches of the curve y � f �x�
with line segments. To approximate the integral of f from a to b, we add the “signed”
areas of the trapezoids made by joining the ends of the segments to the x-axis.

The region between the curve and the x-axis is then approximated by the trapezoids, the
area of each trapezoid being the length of its horizontal “altitude” times the average of its
two vertical “bases.” That is,

�b

a

f �x� dx 
 h • �
y0 �

2
y1� � h • �

y1 �

2
y2� � … � h • �

yn�1

2
� yn�

� h ( �
y
2
0� � y1 � y2 � … � yn�1 � �

y
2
n� )

� �
h
2

� (y0 � 2y1 � 2y2 � … � 2yn�1 � yn ),

where

y0 � f �a�, y1 � f �x1�, … , yn�1 � f �xn�1�, yn � f �b�.

This is algebraically equivalent to finding the numerical average of LRAM and RRAM;
indeed, that is how some texts define the Trapezoidal Rule.
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EXAMPLE 1 Applying the Trapezoidal Rule

Use the Trapezoidal Rule with  n � 4  to estimate  �2
1 x2 dx.  Compare the estimate

with the value of  NINT �x2, x, 1, 2� and with the exact value.

SOLUTION

Partition �1, 2� into four subintervals of equal length (Figure 5.32). Then evaluate  y � x2

at each partition point (Table 5.4). 

Using these y values, n � 4, and  h � �2 � 1��4 � 1�4  in the Trapezoidal Rule, we
have

T � �
h
2

� (y0 � 2y1 � 2y2 � 2y3 � y4 )
� �

1
8

� (1 � 2 ( �
2
1
5
6
� ) � 2 ( �

3
1
6
6
� ) � 2 ( �

4
1

9
6
� ) � 4)

� �
7
3
5
2
� � 2.34375.

The value of  NINT �x2, x, 1, 2� is 2.333333333.

The exact value of the integral is

�2

1

x2 dx � �
x
3

3

� ]2

1

� �
8
3

� � �
1
3

� � �
7
3

� .

The T approximation overestimates the integral by about half a percent of its true value of
7�3. The percentage error is �2.34375 � 7�3���7�3� 
 0.446%. Now try Exercise 3.

We could have predicted that the Trapezoidal Rule would overestimate the integral in
Example 1 by considering the geometry of the graph in Figure 5.32. Since the parabola is
concave up, the approximating segments lie above the curve, giving each trapezoid slightly
more area than the corresponding strip under the curve. In Figure 5.31 we see that the
straight segments lie under the curve on those intervals where the curve is concave down,

The Trapezoidal Rule

To approximate  �b
a f �x� dx, use

T � �
h
2

� (y0 � 2y1 � 2y2 � … � 2yn�1 � yn ) ,

where �a, b� is partitioned into n subintervals of equal length h � �b � a��n.
Equivalently,

T � �
LRAMn��

�

2
��

RRAMn� ,

where LRAMn and RRAMn are the Riemann sums using the left and right 
endpoints, respectively, for f for the partition.

x

y

y � x2

20 1

P4

P3

P2

P1

P0

1

4

5–
4

25—
16

6–
4

7–
4

36—
16

49—
16

Figure 5.32 The trapezoidal approxi-
mation of the area under the graph of 
y � x2 from x � 1 to x � 2 is a slight
overestimate. (Example 1)

Table 5.4

x y � x2

1 1

�
5
4

� �
2
1
5
6
�

�
6
4

� �
3
1
6
6
�

�
7
4

� �
4
1
9
6
�

2 4
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308 Chapter 5 The Definite Integral

causing the Trapezoidal Rule to underestimate the integral on those intervals. The inter-
pretation of “area” changes where the curve lies below the x-axis but it is still the case that
the higher y-values give the greater signed area. So we can always say that T overestimates
the integral where the graph is concave up and underestimates the integral where the graph
is concave down. 

EXAMPLE 2 Averaging Temperatures

An observer measures the outside temperature every hour from noon until midnight,
recording the temperatures in the following table.

What was the average temperature for the 12-hour period?

SOLUTION

We are looking for the average value of a continuous function (temperature) for which
we know values at discrete times that are one unit apart. We need to find

av� f � � �
b �

1
a

��b

a

f �x� dx,

without having a formula for f �x�. The integral, however, can be approximated by the
Trapezoidal Rule, using the temperatures in the table as function values at the points
of a 12-subinterval partition of the 12-hour interval (making h � 1). 

T � �
h
2

� (y0 � 2y1 � 2y2 � … � 2y11 � y12 )
� �

1
2

� (63 � 2 • 65 � 2 • 66 � … � 2 • 58 � 55)
� 782

Using T to approximate  �b
a f �x� dx, we have

av� f � � �
b �

1
a

� • T � �
1
1
2
� • 782 � 65.17.

Rounding to be consistent with the data given, we estimate the average temperature as
65 degrees.                                                                                 Now try Exercise 7.

Other Algorithms
LRAM, MRAM, RRAM, and the Trapezoidal Rule all give reasonable approximations to
the integral of a continuous function over a closed interval. The Trapezoidal Rule is more
efficient, giving a better approximation for small values of n, which makes it a faster algo-
rithm for numerical integration. 

Indeed, the only shortcoming of the Trapezoidal Rule seems to be that it depends on
approximating curved arcs with straight segments. You might think that an algorithm that
approximates the curve with curved pieces would be even more efficient (and hence faster
for machines), and you would be right. All we need to do is find a geometric figure with a
straight base, straight sides, and a curved top that has a known area. You might not know
one, but the ancient Greeks did; it is one of the things they knew about parabolas.

Time ⏐ N 1 2 3 4 5 6 7 8 9 10 11 M

Temp ⏐ 63 65 66 68 70 69 68 68 65 64 62 58 55
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Area Under a Parabolic Arc

The area AP of a figure having a horizontal base, vertical sides, and a parabolic top
(Figure 5.33) can be computed by the formula

AP � �
h
3

� ( l � 4m � r ) ,

where h is half the length of the base, l and r are the lengths of the left and right sides,
and m is the altitude at the midpoint of the base. This formula, once a profound dis-
covery of ancient geometers, is readily verified today with calculus.

1. Coordinatize Figure 5.33 by centering the base at the origin, as shown in Figure
5.34. Let  y � Ax2 � Bx � C be the equation of the parabola. Using this equa-
tion, show that  y0 � Ah2 � Bh � C, y1 � C, and  y2 � Ah2 � Bh � C.

2. Show that  y0 � 4y1 � y2 � 2Ah2 � 6C.

3. Integrate to show that the area AP is

�
h
3

� �2Ah2 � 6C �.

4. Combine these results to derive the formula

AP � �
h
3

� (y0 � 4y1 � y2 ) .

EXPLORATION 1

Simpson’s Rule

To approximate �b
a f �x� dx, use

S � �
h
3

� (y0 � 4y1 � 2y2 � 4y3 � … � 2yn�2 � 4yn�1 � yn ) ,

where �a, b� is partitioned into an even number n of subintervals of equal length
h � �b � a��n.

h

l m

r

L M

Parabolic arc

R

h

x

y

0 h–h

y = Ax2 + +Bx C

y1

y2

y0

(0, y1)

(h, y2)

(–h, y0)

Parabola

What’s in a Name?

The formula that underlies Simpson’s
Rule (see Exploration 1) was 
discovered long before Thomas 
Simpson (1720–1761) was born. Just 
as Pythagoras did not discover the
Pythagorean Theorem, Simpson did 
not discover Simpson’s Rule. It is an-
other of history’s beautiful quirks that
one of the ablest mathematicians 
of eighteenth-century England is re-
membered not for his successful text-
books and his contributions to mathe-
matical analysis, but for a rule that was
never his, that he never laid claim to,
and that bears his name only because
he happened to mention it in one of his
books.

Figure 5.33 The area under the para-
bolic arc can be computed from the length
of the base LR and the lengths of the alti-
tudes constructed at L, R and midpoint M.
(Exploration 1)

Figure 5.34 A convenient coordinatiza-
tion of Figure 5.33. The parabola has
equation y � Ax2 � Bx � C, and the mid-
point of the base is at the origin. 
(Exploration 1)

This last formula leads to an efficient rule for approximating integrals numerically.
Partition the interval of integration into an even number of subintervals, apply the formula
for AP to successive interval pairs, and add the results. This algorithm is known as
Simpson’s Rule. 

EXAMPLE 3 Applying Simpson’s Rule

Use Simpson’s Rule with  n � 4  to approximate  �2
0 5x4 dx.

SOLUTION

Partition �0, 2� into four subintervals and evaluate  y � 5x4 at the partition points. (See
Table 5.5 on the next page.)

continued
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310 Chapter 5 The Definite Integral

Then apply Simpson’s Rule with  n � 4  and  h � 1�2:

S � �
h
3

� (y0 � 4y1 � 2y2 � 4y3 � y4 )
� �

1
6

� (0 � 4 ( �
1
5
6
� ) � 2 (5) � 4 (�

4
1
0
6
5

� ) � 80)
� �

3
1
8
2
5

� .

This estimate differs from the exact value (32) by only 1�12, a percentage error of less
than three-tenths of one percent—and this was with just 4 subintervals.

Now try Exercise 17.

There are still other algorithms for approximating definite integrals, most of them
involving fancy numerical analysis designed to make the calculations more efficient for
high-speed computers. Some are kept secret by the companies that design the machines. In
any case, we will not deal with them here. 

Error Analysis
After finding that the trapezoidal approximation in Example 1 overestimated the integral,
we pointed out that this could have been predicted from the concavity of the curve we were
approximating.

Knowing something about the error in an approximation is more than just an interesting
sidelight. Despite what your years of classroom experience might have suggested, exact
answers are not always easy to find in mathematics. It is fortunate that for all practical pur-
poses exact answers are also rarely necessary. (For example, a carpenter who computes the
need for a board of length �34	 feet will happily settle for an approximation when cutting
the board.)

Suppose that an exact answer really can not be found, but that we know that an approx-
imation within 0.001 unit is good enough. How can we tell that our approximation is within
0.001 if we do not know the exact answer? This is where knowing something about the error
is critical. 

Since the Trapezoidal Rule approximates curves with straight lines, it seems reasonable
that the error depends on how “curvy” the graph is. This suggests that the error depends on
the second derivative. It is also apparent that the error depends on the length h of the subin-
tervals. It can be shown that if f � is continuous the error in the trapezoidal approximation,
denoted ET , satisfies the inequality

�ET � 	 �
b

1
�

2
a

� h2Mf �,

where �a, b� is the interval of integration, h is the length of each subinterval, and Mf � is the
maximum value of � f �� on �a, b�.

It can also be shown that the error ES in Simpson’s Rule depends on h and the fourth
derivative. It satisfies the inequality

�ES � 	 �
b
1
�

80
a

� h4Mf (4),

where [a, b] is the interval of integration, h is the length of each subinterval, and Mf (4) is the
maximum value of � f (4)� on �a, b�, provided that f (4) is continuous.

For comparison’s sake, if all the assumptions hold, we have the following error
bounds.

Table 5.5

x y � 5x4

0 0

�
1
2

� �
1
5
6
�

1 5

�
3
2

� �
4
1
0
6
5

�

2 80
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If we disregard possible differences in magnitude between Mf � and Mf (4), we notice
immediately that �b � a��180 is one-fifteenth the size of �b � a��12, giving S an obvious
advantage over T as an approximation. That, however, is almost insignificant when com-
pared to the fact that the trapezoid error varies as the square of h, while Simpson’s error
varies as the fourth power of h. (Remember that h is already a small number in most parti-
tions.)

Table 5.6 shows T and S values for approximations of �2
1 1�x dx using various values 

of n. Notice how Simpson’s Rule dramatically improves over the Trapezoidal Rule. In par-
ticular, notice that when we double the value of n (thereby halving the value of h), the T
error is divided by 2 squared, while the S error is divided by 2 to the fourth.

Error Bounds

If T and S represent the approximations to  �b
a f �x� dx given by the Trapezoidal

Rule and Simpson’s Rule, respectively, then the errors ET and ES satisfy

�ET � 	 �
b

1
�

2
a

� h2Mf � and �ES � 	 �
b
1
�

80
a

� h4Mf (4).

Table 5.6 Trapezoidal Rule Approximations (Tn) and Simpson’s 

Rule Approximations (Sn) of ln 2 � �2
1 (1/x) dx

n Tn �Error� less than … Sn �Error� less than …

10 0.6937714032 0.0006242227 0.6931502307 0.0000030502
20 0.6933033818 0.0001562013 0.6931473747 0.0000001942
30 0.6932166154 0.0000694349 0.6931472190 0.0000000385
40 0.6931862400 0.0000390595 0.6931471927 0.0000000122
50 0.6931721793 0.0000249988 0.6931471856 0.0000000050

100 0.6931534305 0.0000062500 0.6931471809 0.0000000004

This has a dramatic effect as h gets very small. The Simpson approximation for n � 50
rounds accurately to seven places, and for n � 100 agrees to nine decimal places 
(billionths)!

We close by showing you the values (Table 5.7) we found for �5
1 �sin x��x dx by six dif-

ferent calculator methods. The exact value of this integral to six decimal places is 0.603848,
so both Simpson’s method with 50 subintervals and NINT give results accurate to at least
six places (millionths).

Table 5.7 Approximations of
�1

5 (sin x)�x dx

Method Subintervals Value

LRAM 50 0.6453898

RRAM 50 0.5627293

MRAM 50 0.6037425

TRAP 50 0.6040595

SIMP 50 0.6038481

NINT Tol � 0.00001 0.6038482

Quick Review 5.5 (For help, go to Sections 3.9 and 4.3.)

In Exercises 1–10, tell whether the curve is concave up or concave
down on the given interval.

1. y � cos x on ��1, 1�

2. y � x4 � 12x � 5 on �8, 17�

3. y � 4x3 � 3x2 � 6 on ��8, 0�

4. y � sin �x�2� on �48�, 50��

5. y � e2x on ��5, 5�

6. y � ln x on �100, 200�

7. y � �
1
x

� on �3, 6�

8. y � csc x on �0, ��

9. y � 1010 � 10x10 on �10, 1010�

10. y � sin x � cos x on �1, 2�
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312 Chapter 5 The Definite Integral

In Exercises 1–6, (a) use the Trapezoidal Rule with  n � 4  to
approximate the value of the integral. (b) Use the concavity of the
function to predict whether the approximation is an overestimate or
an underestimate. Finally, (c) find the integral’s exact value to check
your answer. 

1. �2

0

x dx 2. �2

0

x2 dx

3. �2

0

x3 dx 4. �2

1

�
1
x

� dx

5. �4

0

�x	 dx 6. ��

0

sin x dx

7. Use the function values in the following table and the
Trapezoidal Rule with n � 6 to approximate �6

0  f �x� dx.

8. Use the function values in the following table and the
Trapezoidal Rule with n � 6 to approximate �8

2  f �x� dx.

9. Volume of Water in a Swimming Pool A rectangular
swimming pool is 30 ft wide and 50 ft long. The table below
shows the depth h�x� of the water at 5-ft intervals from one end
of the pool to the other. Estimate the volume of water in the pool
using the Trapezoidal Rule with  n � 10, applied to the integral 

V � �50

0

30 • h�x� dx.

10. Stocking a Fish Pond As the fish and game warden of your
township, you are responsible for stocking the town pond with
fish before the fishing season. The average depth of the pond is
20 feet. Using a scaled map, you measure distances across the
pond at 200-foot intervals, as shown in the diagram.

(a) Use the Trapezoidal Rule to estimate the volume of the pond.

(b) You plan to start the season with one fish per 1000 cubic
feet. You intend to have at least 25% of the opening day’s fish
population left at the end of the season. What is the maximum
number of licenses the town can sell if the average seasonal
catch is 20 fish per license?

Position (ft) Depth (ft) Position (ft) Depth (ft)
x h�x� x h�x�

0 6.0 30 11.5
5 8.2 35 11.9

10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0

11. Audi S4 Quattro Cabriolet The accompanying table shows
time-to-speed data for a 2004 Audi S4 Quattro Cabriolet
accelerating from rest to 130 mph. How far had the Cabriolet
traveled by the time it reached this speed? (Use trapezoids to
estimate the area under the velocity curve, but be careful: the
time intervals vary in length.)

12. The table below records the velocity of a bobsled at 1-second
intervals for the first eight seconds of its run. Use the
Trapezoidal Rule to approximate the distance the bobsled travels
during that 8-second interval. (Give your final answer in feet.)

Time (Seconds) Speed (Miles/hr)

0 0
1 3
2 7
3 12
4 17
5 25
6 33
7 41
8 48

Speed Change: Time 
Zero to (sec)

30 mph 2.0
40 mph 3.2
50 mph 4.5
60 mph 5.8
70 mph 7.7
80 mph 9.5
90 mph 11.6

100 mph 14.9
110 mph 17.8
120 mph 21.7
130 mph 26.3

Source: Car and Driver, July 2004.

1000 ft

1140 ft

1160 ft

1110 ft

860 ft

0 ft

800 ft

520 ft

0 ft

Vertical spacing =  200 ft

Section 5.5 Exercises

x 0 1 2 3 4 5 6
f (x) 12 10 9 11 13 16 18

x 2 3 4 5 6 7 8
f (x) 16 19 17 14 13 16 20
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Section 5.5 Trapezoidal Rule 313

In Exercises 13–18, (a) use Simpson’s Rule with n � 4 to
approximate the value of the integral and (b) find the exact
value of the integral to check your answer. (Note that these are
the same integrals as Exercises 1–6, so you can also compare it
with the Trapezoidal Rule approximation.)

13. �2

0

x dx 14. �2

0

x2 dx

15. �2

0

x3 dx 16. �2

1

�
1
x

� dx

17. �4

0

�x	 dx 18. ��

0

sin x dx

19. Consider the integral �3
�1�x3 � 2x� dx.

(a) Use Simpson’s Rule with  n � 4  to approximate its value.

(b) Find the exact value of the integral. What is the error, �ES �?

(c) Explain how you could have predicted what you found 
in (b) from knowing the error-bound formula. 

(d) Writing to Learn Is it possible to make a general
statement about using Simpson’s Rule to approximate integrals
of cubic polynomials? Explain.

20. Writing to Learn In Example 2 (before rounding) we 
found the average temperature to be 65.17 degrees when 
we used the integral approximation, yet the average of the 13
discrete temperatures is only 64.69 degrees. Considering the
shape of the temperature curve, explain why you would expect
the average of the 13 discrete temperatures to be less than the
average value of the temperature function on the entire interval.

21. (Continuation of Exercise 20)

(a) In the Trapezoidal Rule, every function value in the sum is
doubled except for the two endpoint values. Show that if you
double the endpoint values, you get 70.08 for the average
temperature.

(b) Explain why it makes more sense to not double the endpoint
values if we are interested in the average temperature over the
entire 12-hour period.

22. Group Activity For most functions, Simpson’s Rule gives a
better approximation to an integral than the Trapezoidal Rule for
a given value of n. Sketch the graph of a function on a closed
interval for which the Trapezoidal Rule obviously gives a better
approximation than Simpson’s Rule for n � 4. 

In Exercises 23–26, use a calculator program to find the Simpson’s
Rule approximations with  n � 50  and  n � 100.

23. �1

�1

2�1	 �	 x	2	 dx The exact value is �.

24. �1

0

�1	 �	 x	4	 dx

25. ���2

0

�
sin

x
x

� dx

26. ���2

0

sin �x2� dx An integral associated with the
diffraction of light

An integral that came 
up in Newton’s research

27. Consider the integral  �
�

0 sin x dx.

(a) Use a calculator program to find the Trapezoidal Rule
approximations for  n � 10, 100, and  1000. 

(b) Record the errors with as many decimal places of accuracy
as you can.

(c) What pattern do you see?

(d) Writing to Learn Explain how the error bound for ET

accounts for the pattern.

28. (Continuation of Exercise 27) Repeat Exercise 27 with
Simpson’s Rule and ES.

29. Aerodynamic Drag A vehicle’s aerodynamic drag is
determined in part by its cross section area, so, all other things
being equal, engineers try to make this area as small as possible.
Use Simpson’s Rule to estimate the cross section area of the body
of James Worden’s solar-powered Solectria® automobile at M.I.T.
from the diagram below.

30. Wing Design The design of a new airplane requires a gasoline
tank of constant cross section area in each wing. A scale drawing
of a cross section is shown here. The tank must hold 5000 lb of
gasoline, which has a density of 42 lb�ft3. Estimate the length of
the tank.

y0

y0 = 1.5 ft, y1 = 1.6 ft, y2 = 1.8 ft, y3 = 1.9 ft,
y4 = 2.0 ft, y5 = y6 = 2.1 ft Horizontal spacing = 1 ft

y1 y2
y3 y4 y5 y6

26"

20"

3"

18
.7

5"
24

"
26

"
24

"
18

.7
5"

24"
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Standardized Test Questions
You should solve the following problems without using a 
graphing calculator.

31. True or False The Trapezoidal Rule will underestimate 
�b

a f �x� dx if the graph of f is concave up on [a, b]. Justify your
answer.

32. True or False For a given value of n, the Trapezoidal Rule
with n subdivisions will always give a more accurate estimate of
�b

a f �x� dx than a right Riemann sum with n subdivisions. Justify
your answer.

33. Multiple Choice Using 8 equal subdivisions of the interval
[2, 12], the LRAM approximation of �12

2 f �x� dx is 16.6 and the
trapezoidal approximation is 16.4. What is the RRAM
approximation?

(A) 16.2 (B) 16.5

(C) 16.6 (D) 16.8

(E) It cannot be determined from the given information.

34. Multiple Choice If three equal subdivisions of [�2, 4] are 

used, what is the trapezoidal approximation of �
4

�2
�
e
2

x
� dx?

(A) e4 � e2 � e0 � e�2

(B) e4 � 2e2 � 2e0 � e�2

(C) �
1
2

�(e4 � e2 � e0 � e�2)

(D) �
1
2

�(e4 � 2e2 � 2e0 � e�2)

(E) �
1
4

�(e4 � 2e2 � 2e0 � e�2)

35. Multiple Choice The trapezoidal approximation of 
�p0 sin x dx using 4 equal subdivisions of the interval of
integration is

(A) �
p

2
�

(B) p

(C) �
p

4
� (1 � �2	)

(D) �
p

2
� (1 � �2	)

(E) �
p

4
� (2 � �2	)

36. Multiple Choice Suppose f, f �, and  f � are all positive on the
interval [a, b], and suppose we compute LRAM, RRAM, and
trapezoidal approximations of I � �b

a f �x� dx using the same
number of equal subdivisions of [a, b]. If we denote the three

approximations of I as L, R, and T respectively, which of the
following is true?

(A) R 
 T 
 I 
 L (B) R 
 I 
 T 
 L (C) L 
 I 
 T 
 R

(D) L 
 T 
 I 
 R (E) L 
 I 
 R 
 T

Explorations
37. Consider the integral  �1

�1 sin �x2� dx.

(a) Find f � for  f �x� � sin �x2�.
(b) Graph  y � f ��x� in the viewing window ��1, 1� by ��3, 3�.
(c) Explain why the graph in part (b) suggests that � f ��x�� 	 3
for �1 	 x 	 1.

(d) Show that the error estimate for the Trapezoidal Rule in this
case becomes 

�ET � 	 �
h
2

2
� .

(e) Show that the Trapezoidal Rule error will be less than or
equal to 0.01 if  h 	 0.1. 

(f) How large must n be for  h 	 0.1?

38. Consider the integral  �1
�1 sin �x2� dx.

(a) Find f �4� for  f �x � � sin �x2�.  (You may want to 
check your work with a CAS if you have one available.)

(b) Graph  y � f �4��x � in the viewing window ��1, 1� by 
��30, 10�.
(c) Explain why the graph in part (b) suggests that � f �4��x �� 	 30
for �1 	 x 	 1.

(d) Show that the error estimate for Simpson’s Rule in this case
becomes 

�ES � 	 �
h
3

4
� .

(e) Show that the Simpson’s Rule error will be less than or equal
to 0.01 if  h 	 0.4. 

(f) How large must n be for  h 	 0.4?

Extending the Ideas

39. Using the definitions, prove that, in general,

Tn � .

40. Using the definitions, prove that, in general,

S2n ��
MRAM

3
n � 2T2n� .

LRAMn � RRAMn���
2
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area under a curve (p. 263)
average value (p. 287)
bounded function (p. 281)
cardiac output (p. 268)
characteristic function of 

the rationals (p. 282)
definite integral (p. 276)
differential calculus (p. 263)
dummy variable (p. 277)
error bounds (p. 311)
Fundamental Theorem of 

Calculus (p. 294)
integrable function (p. 276)
integral calculus (p. 263)

Integral Evaluation Theorem (p. 299)
integral of f from a to b (p. 276)
integral sign (p. 277)
integrand (p. 277)
lower bound (p. 286)
lower limit of integration (p. 277)
LRAM (p. 265)
mean value (p. 287)
Mean Value Theorem for Definite Integrals

(p. 288)
MRAM (p. 265)
net area (p. 279)
NINT (p. 281)
norm of a partition (p. 275)

partition (p. 274)
Rectangular Approximation Method (RAM)

(p. 265)
regular partition (p. 276)
Riemann sum (p. 274)
RRAM (p. 265)
sigma notation (p. 274)
Simpson’s Rule (p. 309)
subinterval (p. 275)
total area (p. 300)
Trapezoidal Rule (p. 307)
upper bound (p. 286)
upper limit of integration (p. 277)
variable of integration (p. 277)

Quick Quiz for AP* Preparation: Sections 5.4 and 5.5

You may use a graphing calculator to solve the following
problems. 

1. Multiple Choice The function f is continuous on the closed
interval [1, 7] and has values that are given in the table below. 

Using the subintervals [1, 4], [4, 6], and [6, 7], what is the
trapezoidal approximation of �7

1 f �x� dx?   

(A) 110 (B) 130 (C) 160 (D) 190 (E) 210

2. Multiple Choice Let F(x) be an antiderivative of sin3 x. 
If F(1) � 0, then F(8) �

(A) 0.00 (B) 0.021 (C) 0.373 (D) 0.632 (E) 0.968

3. Multiple Choice Let f (x) � �x2�3x
�2 et2dt. At what value of x

is f (x) a minimum?

(A) For no value of x (B) �
1
2

� (C) �
3
2

� (D) 2 (E) 3

4. Free Response Let F(x) � �x
0 sin �t2� dt for 0 	 x 	 3.

(a) Use the Trapezoidal Rule with four equal subdivisions of the
closed interval [0, 2] to approximate F(2). 

(b) On what interval or intervals is F increasing? Justify your
answer.

(c) If the average rate of change of F on the closed interval 
[0, 3] is k, find �3

0 sin(t2) dt in terms of k.

x 1 4 6 7
f (x) 10 30 40 20

Chapter 5 Key Terms

Chapter 5 Review Exercises

The collection of exercises marked in red could be used as a chapter test.

Exercises 1–6 refer to the region R in the first quadrant enclosed by
the x-axis and the graph of the function  y � 4x � x3.

1. Sketch R and partition it into four subregions, each with a base
of length  Dx � 1�2.

2. Sketch the rectangles and compute (by hand) the area for the
LRAM4 approximation.

3. Sketch the rectangles and compute (by hand) the area for the
MRAM4 approximation.

4. Sketch the rectangles and compute (by hand) the area for the
RRAM4 approximation.

5. Sketch the trapezoids and compute (by hand) the area for the T4

approximation.

6. Find the exact area of R by using the Fundamental Theorem 
of Calculus.

7. Use a calculator program to compute the RAM approximations
in the following table for the area under the graph of  y � 1�x
from  x � 1  to  x � 5.

n LRAMn MRAMn RRAMn

10
20
30
50

100
1000

5128_CH05_262-319.qxd  1/13/06  12:47 PM  Page 315



316 Chapter 5 The Definite Integral

8. (Continuation of Exercise 7) Use the Fundamental Theorem of
Calculus to determine the value to which the 
sums in the table are converging.

9. Suppose

�2

�2

f �x� dx � 4, �5

2

f �x� dx � 3, �5

�2

g�x� dx � 2.

Which of the following statements are true, and which, if any,
are false?

(a) �2

5

f �x� dx � �3

(b) �5

�2

� f �x� � g�x�� dx � 9

(c) f �x� 	 g�x� on the interval �2 	 x 	 5

10. The region under one arch of the curve  y � sin x is revolved
around the x-axis to form a solid. (a) Use the method of 
Example 3, Section 5.1, to set up a Riemann sum that approx-
imates the volume of the solid. (b) Find the volume using NINT.

11. The accompanying graph shows the velocity �m �sec� of a body
moving along the s-axis during the time interval from  t � 0  to
t � 10 sec.  (a) About how far did the body travel during those
10 seconds?

(b) Sketch a graph of position (s) as a function of time �t� for
0 	 t 	 10, assuming  s�0� � 0.

12. The interval �0, 10� is partitioned into n subintervals of length
Dx � 10�n.  We form the following Riemann sums, choosing
each ck in the kth subinterval. Write the limit as n→∞ of each
Riemann sum as a definite integral.

(a) �
n

k�1

�ck�3�x (b) �
n

k�1

ck�sin ck��x

(c) �
n

k�1

ck�3ck � 2�2�x (d) �
n

k�1

�1 � ck
2��1�x

(e) �
n

k�1

� �9 � sin2 ��ck �10���x

In Exercises 13 and 14, find the total area between the curve and the
x-axis.

13. y � 4 � x, 0 	 x 	 6

14. y � cos x, 0 	 x 	 �

0

1

2
Time (sec)

V
el

oc
ity

 (
m

/s
ec

)

4 6 8 10

2

3

4

5

In Exercises 15–24, evaluate the integral analytically by using the
Integral Evaluation Theorem (Part 2 of the Fundamental Theorem,
Theorem 4).

15. �2

�2

5 dx 16. �5

2

4x dx

17. ���4

0

cos x dx 18. �1

�1

�3x2 � 4x � 7� dx

19. �1

0

�8s3 � 12s2 � 5� ds 20. �2

1

�
x
4
2� dx

21. �27

1

y�4�3 dy 22. � 4

1

�
t�
dt

t	
�

23. ���3

0

sec2 u du 24. �e

1

�1�x� dx

In Exercises 25–29, evaluate the integral.

25. �1

0

�
�2x

3
�

6
1�3� dx 26. �2

1
(x � �

x
1
2� ) dx

27. �0

���3

sec x tan x dx 28. �1

�1

2x sin �1 � x2 � dx

29. �2

0

�
y �

2
1

� dy

In Exercises 30–32, evaluate the integral by interpreting it as area
and using formulas from geometry.

30. �2

0

�4	 �	 x	2	 dx 31. �8

�4

�x � dx

32. �8

�8

2�6	4	 �	 x	2	 dx

33. Oil Consumption on Pathfinder Island A diesel generator
runs continuously, consuming oil at a gradually increasing rate
until it must be temporarily shut down to have the filters
replaced.

(a) Give an upper estimate and a lower estimate for the amount
of oil consumed by the generator during that week. 

(b) Use the Trapezoidal Rule to estimate the amount of oil
consumed by the generator during that week.

Oil Consumption Rate 
Day �liters�hour)

Sun 0.019
Mon 0.020
Tue 0.021
Wed 0.023
Thu 0.025
Fri 0.028
Sat 0.031
Sun 0.035
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34. Rubber-Band–Powered Sled A sled powered by a wound
rubber band moves along a track until friction and the unwinding
of the rubber band gradually slow it to a stop. A speedometer in
the sled monitors its speed, which is recorded at 3-second
intervals during the 27-second run.

(a) Give an upper estimate and a lower estimate for the distance
traveled by the sled.

(b) Use the Trapezoidal Rule to estimate the distance traveled by
the sled.

35. Writing to Learn Your friend knows how to compute
integrals but never could understand what difference the “dx”
makes, claiming that it is irrelevant. How would you explain to
your friend why it is necessary?

36. The function 

is discontinuous at 0, but integrable on ��4, 4�. Find  �4
�4 f �x� dx.

37. Show that  0 	 �1
0 �1	 �	 s	in	2	x	 dx 	 �2	.

38. Find the average value of 

(a) y � �x	 over the interval �0, 4�.
(b) y � a�x	 over the interval �0, a�.

In Exercises 39–42, find dy�dx.

39. y � �x

2

�2	 �	 c	o	s3	 t	 dt 40. y � �7x2

2

�2	 �	 c	o	s3	 t	 dt

41. y � �1

x

�
3 �

6
t 4� dt 42. y � �2x

x

�
t2 �

1
1

� dt

43. Printing Costs Including start-up costs, it costs a printer $50 
to print 25 copies of a newsletter, after which the marginal cost at
x copies is 

�
d
d

c
x
� � �

�

2

x	
� dollars per copy. 

Find the total cost of printing 2500 newsletters.

44. Average Daily Inventory Rich Wholesale Foods, a
manufacturer of cookies, stores its cases of cookies in an air-
conditioned warehouse for shipment every 14 days. Rich tries
to keep 600 cases on reserve to meet occasional peaks in
demand, so a typical 14-day inventory function is  I �t� �
600 � 600t, 0 	 t 	 14. The holding cost for each case is 4¢
per day. Find Rich’s average daily inventory and average daily
holding cost (that is, the average of I(x) for the 14-day period,
and this average multiplied by the holding cost).

Time �sec� Speed �ft �sec�
0 5.30
3 5.25
6 5.04
9 4.71

12 4.25
15 3.66
18 2.94
21 2.09
24 1.11
27 0

45. Solve for x: �
x

0 �t3 � 2t � 3� dt � 4.

46. Suppose f �x� has a positive derivative for all values of x and that
f �1� � 0.  Which of the following statements must be true of 

g�x� � �x

0

f �t� dt?

(a) g is a differentiable function of x.

(b) g is a continuous function of x.

(c) The graph of g has a horizontal tangent line at  x � 1.

(d) g has a local maximum at  x � 1.

(e) g has a local minimum at  x � 1.

(f) The graph of g has an inflection point at  x � 1.

(g) The graph of dg�dx crosses the x-axis at  x � 1.

47. Suppose F�x� is an antiderivative of  f �x� � �1	 �	 x	4	. Express 

�1
0 �1	 �	 x	4	 dx in terms of F.

48. Express the function y�x� with 

�
d
d

y
x
� � �

sin
x

x
� and y�5� � 3

as a definite integral.

49. Show that y � x2 � �
x

1 1�t dt � 1  satisfies both of the following
conditions:

i. y � � 2 � �
x
1
2�

ii. y � 2 and y� � 3 when x � 1.

50. Writing to Learn Which of the following is the graph of the
function whose derivative is  dy�dx � 2x and whose value at
x � 1  is 4?  Explain your answer.

51. Fuel Efficiency An automobile computer gives a digital
readout of fuel consumption in gallons per hour. During a trip,
a passenger recorded the fuel consumption every 5 minutes for 
a full hour of travel.

(a) Use the Trapezoidal Rule to approximate the total fuel
consumption during the hour.

time gal�h time gal�h

0 2.5 35 2.5
5 2.4 40 2.4

10 2.3 45 2.3
15 2.4 50 2.4
20 2.4 55 2.4
25 2.5 60 2.3
30 2.6

x

y

0 1–1

(a)

(1, 4)

x

y

0 1–1

(b)

(1, 4)

x

y

0 1–1

(c)

(1, 4)

x2, x � 0
f �x� � {x � 2, x 
 0
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(b) If the automobile covered 60 miles in the hour, what was its
fuel efficiency (in miles per gallon) for that portion of the trip?

52. Skydiving Skydivers A and B are in a helicopter hovering at
6400 feet. Skydiver A jumps and descends for 4 sec before
opening her parachute. The helicopter then climbs to 7000 feet
and hovers there. Forty-five seconds after A leaves the aircraft,
B jumps and descends for 13 sec before opening her parachute.
Both skydivers descend at 16 ft �sec with parachutes open.
Assume that the skydivers fall freely (with acceleration 
�32 ft �sec2) before their parachutes open.

(a) At what altitude does A’s parachute open?

(b) At what altitude does B’s parachute open?

(c) Which skydiver lands first?

53. Relating Simpson’s Rule, MRAM, and T The figure below
shows an interval of length 2h with a trapezoid, a midpoint
rectangle, and a parabolic region on it.

(a) Show that the area of the trapezoid plus twice the area 
of the rectangle equals

h�y1 � 4y2 � y3�.
(b) Use the result in part (a) to prove that 

S2n ��
2 • MRA

3
Mn � Tn� .

54. The graph of a function f consists of a semicircle and two line
segments as shown below. 

Let  g�x� � �
x

1 f �t� dt.

(a) Find g�1�.
(b) Find g�3�.
(c) Find g��1�.
(d) Find all values of x on the open interval ��3, 4� at which 
g has a relative maximum.

(e) Write an equation for the line tangent to the graph of 
g at  x � �1.

y

1 3–3

y = f(x)

–1
–1

1

3

x

y

h

y2y1

y3

h
x

(f) Find the x-coordinate of each point of inflection of the graph of
g on the open interval ��3, 4�.
(g) Find the range of g.

55. What is the total area under the curve  y � e�x2�2? 

The graph approaches the x-axis as an asymptote both to the left and
the right, but quickly enough so that the total area is a finite number.
In fact,

NINT �e�x2�2, x, �10, 10�
computes all but a negligible amount of the area. 

(a) Find this number on your calculator. Verify that 
NINT �e�x2�2, x, �20, 20� does not increase the number 
enough for the calculator to distinguish the difference. 

(b) This area has an interesting relationship to �. Perform various
(simple) algebraic operations on the number to discover what it is. 

56. Filling a Swamp A town wants to drain and fill the small
polluted swamp shown below. The swamp averages 5 ft deep.
About how many cubic yards of dirt will it take to fill the area 
after the swamp is drained?

57. Household Electricity We model the voltage V in our homes
with the sine function 

V � Vmax sin �120 � t�,
which expresses V in volts as a function of time t in seconds. The
function runs through 60 cycles each second. The number Vmax is 
the peak voltage.

To measure the voltage effectively, we use an instrument that
measures the square root of the average value of the square of 
the voltage over a 1-second interval:

Vrms � ��V	2�	av	 .

The subscript “rms” stands for “root mean square.” It turns out that 

Vrms � �
V

�
ma

2	
x� . (1)

The familiar phrase “115 volts ac” means that the rms voltage is
115. The peak voltage, obtained from Equation 1 as Vmax �
115�2	, is about 163 volts. 

(a) Find the average value of V 2 over a 1-sec interval. Then find
Vrms, and verify Equation 1.

(b) The circuit that runs your electric stove is rated 240 volts rms.
What is the peak value of the allowable voltage?
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Chapter 5 Review Exercises 319

AP *Examination Preparation
You may use a graphing calculator to solve the following 
problems.

58. The rate at which water flows out of a pipe is given by a
differentiable function R of time t. The table below records the
rate at 4-hour intervals for a 24-hour period.

(a) Use the Trapezoid Rule with 6 subdivisions of equal length
to approximate �24

0 R(t)dt. Explain the meaning of your answer
in terms of water flow, using correct units.

(b) Is there some time t between 0 and 24 such that R�(t) � 0?
Justify your answer.

(c) Suppose the rate of water flow is approximated by 
Q(t) � 0.01(950 � 25x � x2). Use Q(t) to approximate the
average rate of water flow during the 24-hour period. Indicate
units of measure. 

t R(t)
(hours) (gallons per hour)

0 9.6
4 10.3
8 10.9

12 11.1
16 10.9
20 10.5
24 9.6

59. Let f be a differentiable function with the following properties.

i. f �(x) � ax2 � bx ii. f �(1) � �6 and f ��x� � 6

iii. �2
1  f (x) dx � 14

Find f (x). Show your work.

60. The graph of the function f, consisting of three line segments, is
shown below.

Let g(x) � �x
1  f (t)dt. 

(a) Compute g(4) and g(�2). 

(b) Find the instantaneous rate of change of g, with respect to x,
at x � 2.

(c) Find the absolute minimum value of g on the closed interval
[�2, 4]. Justify your answer.

(d) The second derivative of g is not defined at x � 1 and x � 2.
Which of these values are x-coordinates of points of inflection of
the graph of g? Justify your answer.

Calculus at Work

I
have a degree in Mechanical Engineer-
ing with a minor in Psychology. I am a
Research and Development Engineer at

Komag, which designs and manufactures
hard disks in Santa Clara, California. My
job is to test the durability and reliability of
the disks, measuring the rest friction be-
tween the read/write heads and the disk
surface, which is called “Contact-Start-
Stop” testing.

I use calculus to evaluate the moment of
inertia of different disk stacks, which con-
sist of disks on a spindle, separated by
spacer rings. Because the rings vary in
size as well as material, the mass of each

ring must be determined. For such prob-
lems, I refer to my college calculus text-
book and its tables of summations and in-
tegrals. For instance, I use:

Moment of Inertia �

[�n

i�1

Mi Li
2] � �

3
1
� Mrod Lrod

2

where i � components 1 to n;
Mi � mass of component i such 
as the disk and/or ring stack; 
Li � distance of component i
from a reference point; 
Mrod � mass of the spindle that rotates;
Lrod � length of the spindle.

Andrea Woo
Komag

Santa Clara, CA

x

y

0

1

2(–2, 0)

(1, 3)

(4, –1)

(2, 1)

–2
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